DOI QR코드

DOI QR Code

Design of a Robotic Device for Effective Shoulder Rehabilitation

효과적인 견관절 재활을 위한 로봇의 설계

  • Lee, Kyoung-Soub (Dept. of Mechanical Engineering, Korea Advanced Institute of Technology) ;
  • Park, Jeong-Ho (Dept. of Mechanical Engineering, Korea Advanced Institute of Technology) ;
  • Park, Hyung-Soon (Dept. of Mechanical Engineering, Korea Advanced Institute of Technology)
  • 이경섭 (한국과학기술원 기계공학과) ;
  • 박정호 (한국과학기술원 기계공학과) ;
  • 박형순 (한국과학기술원 기계공학과)
  • Received : 2016.11.21
  • Accepted : 2017.05.17
  • Published : 2017.08.01

Abstract

This paper presents a low-cost robotic device for shoulder rehabilitation, which is capable of treating various shoulder disabilities. A 3-DOF passive shoulder joint tracking module was designed to allow for translational motion of the shoulder joint center during arm swing, which is essential for natural shoulder movement. The weight of the user's arm and the device were compensated for by springs, to enable gravity-free shoulder motion. In order to reduce the device's cost, only one actuator was used, which can be aligned with the user's shoulder joint in various orientations. The device is capable of implementing five representative shoulder motions, including flexion/extension, abduction/adduction, horizontal abd/adduction, internal/external rotation, and oblique raise. The proposed low-cost shoulder rehabilitation robot is expected to provide effective rehabilitation for patients with various shoulder impairments.

본 논문에서는 다양한 견관절 장애 증상에 적용할 수 있는 보급형 상지 재활 로봇의 설계를 다룬다. 견관절의 회전에 수반되는 관절 중심의 위치변화를 추종하고, 사용자의 상지와 장치의 무게를 상쇄하는 3자유도 견관절 추종 및 중력보상 메커니즘을 구현하였다. 다양한 방향의 어깨 재활 동작을 구현할 수 있도록 구동축의 방향을 변환하는 메커니즘을 설계하여, 견관절에 대한 구동기의 상대적인 오리엔테이션을 변화시킴으로써 대표적인 5가지 견관절 동작을 수행할 수 있었다. 동시에 재활 운동 중의 견관절의 위치 변화를 추종하여 자연스러운 견관절 운동을 구현할 수 있었다. 최소의 구동기를 사용하는 보급형 로봇으로도 다양한 견관절 질환에 효과적으로 대응할 수 있음을 확인하였다.

Keywords

References

  1. Turner-Stokes, L. and Jackson, D., 2002, "Shoulder Pain After Stroke: a Review of the Evidence base to Inform the Development of an Integrated Care Pathway," Clinical Rehabilitation, Vol. 16, No. 3, pp. 276-298. https://doi.org/10.1191/0269215502cr491oa
  2. Wallace, W. A., 1990, "Sporting Injuries to the Shoulder," Journal of the Royal College of Surgeons of Edinburgh, Vol. 35, No. 6, Suppl, S21-6.
  3. Kiguchi, K., Iwami, K., Yasuda, M., Watanabe, K. and Fukuda, T., 2003, "An Exoskeletal Robot for Human Shoulder Joint Motion Assist," IEEE/ASME transactions on mechatronics, Vol. 8, No. 1, pp. 125-135. https://doi.org/10.1109/TMECH.2003.809168
  4. Graichen, H., Stammberger, T., Bonel, H., Englmeier, K. H., Reiser, M. and Eckstein, F., 2000, "Glenohumeral Translation During Active and Passive Elevation of the Shoulder - a 3D Open-MRI Study," Journal of biomechanics, Vol. 33, No. 5, pp. 609-613. https://doi.org/10.1016/S0021-9290(99)00209-2
  5. Lukasiewicz, A. C., McClure, P., Michener, L., Pratt, N. and Sennett, B., 1999, "Comparison of 3- Dimensional Scapular Position and Orientation between Subjects with and without Shoulder Impingement," Journal of Orthopaedic & Sports Physical Therapy, Vol. 29, No. 10, pp. 574-586. https://doi.org/10.2519/jospt.1999.29.10.574
  6. Sicuri, C., Porcellini, G. and Merolla, G., 2014, "Robotics in Shoulder Rehabilitation," Muscles, ligaments and tendons journal, Vol. 4, No. 2, p. 207.
  7. Ball, S. J., Brown, I. E. and Scott, S. H., 2007, "MEDARM: a rehabilitation robot with 5DOF at the shoulder complex," 2007 IEEE/ASME international conference on Advanced intelligent mechatronics, pp. 1-6.
  8. Nef, T., Guidali, M. and Riener, R., 2009, "ARMin III-arm Therapy Exoskeleton with an Ergonomic Shoulder Actuation," Applied Bionics and Biomechanics, Vol. 6, No. 2, pp. 127-142. https://doi.org/10.1155/2009/962956
  9. Park, H. S., Ren, Y. and Zhang, L. Q., 2008, "IntelliArm: an Exoskeleton for Diagnosis and Treatment of Patients with Neurological Impairments," 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 109-114.
  10. Park, J. H., Lee, K. S. and Park, H. S., 2016, "Development of Low-end Robot System for Comprehensive Shoulder Rehabilitation," Ubiquitous Robots and Ambient Intelligence (URAI), 2016 13th International Conference, pp. 297-297.
  11. Park, J. H., Lee, K. S., Lee, S. U. and Park, H. S., 2016, "A Passive Shoulder Joint Tracking Device for Effective Upper Limb Rehabilitation," International Journal of Precision Engineering and Manufacturing, Vol. 17, No. 11, pp. 1533-1540. https://doi.org/10.1007/s12541-016-0179-5
  12. Winter, D. A., 2009, Biomechanics and Motor Control of Human Movement. John Wiley & Sons.
  13. Nef, T., Mihelj, M. and Riener, R., 2007, "ARMin: a Robot for Patient-cooperative Arm Therapy," Medical & biological engineering & computing, Vol. 45, No. 9, pp. 887-900. https://doi.org/10.1007/s11517-007-0226-6
  14. Smith, J., Kotajarvi, B. R., Padgett, D. J. and Eischen, J. J., 2002, "Effect of Scapular Protraction and Retraction on Isometric Shoulder Elevation Strength," Archives of physical medicine and rehabilitation, Vol. 83, No. 3, pp. 367-370. https://doi.org/10.1053/apmr.2002.29666