• 제목/요약/키워드: Morrey space

검색결과 11건 처리시간 0.023초

GLOBAL WEAK MORREY ESTIMATES FOR SOME ULTRAPARABOLIC OPERATORS OF KOLMOGOROV-FOKKER-PLANCK TYPE

  • Feng, Xiaojing;Niu, Pengcheng;Zhu, Maochun
    • 대한수학회보
    • /
    • 제51권5호
    • /
    • pp.1241-1257
    • /
    • 2014
  • We consider a class of hypoelliptic operators of the following type $$L=\sum_{i,j=1}^{p_0}a_{ij}{\partial}^2_{x_ix_j}+\sum_{i,j=1}^{N}b_{ij}x_i{\partial}_{x_j}-{\partial}_t$$, where ($a_{ij}$), ($b_{ij}$) are constant matrices and ($a_{ij}$) is symmetric positive definite on $\mathbb{R}^{p_0}$ ($p_0{\leqslant}N$). By establishing global Morrey estimates of singular integral on the homogenous space and the relation between Morrey space and weak Morrey space, we obtain the global weak Morrey estimates of the operator L on the whole space $\mathbb{R}^{N+1}$.

PARAMETER MARCINKIEWICZ INTEGRAL AND ITS COMMUTATOR ON GENERALIZED ORLICZ-MORREY SPACES

  • Lu, Guanghui
    • 대한수학회지
    • /
    • 제58권2호
    • /
    • pp.383-400
    • /
    • 2021
  • The aim of this paper is to mainly establish the sufficient and necessary conditions for the boundedness of the commutator ����Ω,b which is generated by the parameter Marcinkiwicz integral ����Ω and the Lipschitz function b on generalized Orlicz-Morrey space L��,��(Rd) in the sense of the Adams type result (or Spanne type result). Moreover, the necessary conditions for the parameter Marcinkiewizcz integral ����Ω on the L��,��(Rd), and the commutator [b,����Ω] generated by the ����Ω and the space BMO on the L��,��(Rd), are also obtained, respectively.

WEAK BOUNDEDNESS FOR THE COMMUTATOR OF n-DIMENSIONAL ROUGH HARDY OPERATOR ON HOMOGENEOUS HERZ SPACES AND CENTRAL MORREY SPACES

  • Lei Ji;Mingquan Wei;Dunyan Yan
    • 대한수학회보
    • /
    • 제61권4호
    • /
    • pp.1053-1066
    • /
    • 2024
  • In this paper, we study the boundedness of the commutator Hb formed by the rough Hardy operator H and a locally integrable function b from homogeneous Herz spaces to homogeneous weak Herz spaces. In addition, the weak boundedness of Hb on central Morrey spaces is also established.

BOUNDEDNESS FOR FRACTIONAL HARDY-TYPE OPERATOR ON HERZ-MORREY SPACES WITH VARIABLE EXPONENT

  • Wu, Jianglong
    • 대한수학회보
    • /
    • 제51권2호
    • /
    • pp.423-435
    • /
    • 2014
  • In this paper, the fractional Hardy-type operator of variable order ${\beta}(x)$ is shown to be bounded from the Herz-Morrey spaces $M\dot{K}^{{\alpha},{\lambda}}_{p_1,q_1({\cdot})}(\mathbb{R}^n)$ with variable exponent $q_1(x)$ into the weighted space $M\dot{K}^{{\alpha},{\lambda}}_{p_2,q_2({\cdot})}(\mathbb{R}^n,{\omega})$, where ${\omega}=(1+|x|)^{-{\gamma}(x)}$ with some ${\gamma}(x)$ > 0 and $1/q_1(x)-1/q_2(x)={\beta}(x)/n$ when $q_1(x)$ is not necessarily constant at infinity. It is assumed that the exponent $q_1(x)$ satisfies the logarithmic continuity condition both locally and at infinity that 1 < $q_1({\infty}){\leq}q_1(x){\leq}(q_1)+$ < ${\infty}(x{\in}\mathbb{R}^n)$.

CHARACTERIZATION OF FUNCTIONS VIA COMMUTATORS OF BILINEAR FRACTIONAL INTEGRALS ON MORREY SPACES

  • Mao, Suzhen;Wu, Huoxiong
    • 대한수학회보
    • /
    • 제53권4호
    • /
    • pp.1071-1085
    • /
    • 2016
  • For $b{\in}L^1_{loc}({\mathbb{R}}^n)$, let ${\mathcal{I}}_{\alpha}$ be the bilinear fractional integral operator, and $[b,{\mathcal{I}}_{\alpha}]_i$ be the commutator of ${\mathcal{I}}_{\alpha}$ with pointwise multiplication b (i = 1, 2). This paper shows that if the commutator $[b,{\mathcal{I}}_{\alpha}]_i$ for i = 1 or 2 is bounded from the product Morrey spaces $L^{p_1,{\lambda}_1}({\mathbb{R}}^n){\times}L^{p_2,{\lambda}_2}({\mathbb{R}}^n)$ to the Morrey space $L^{q,{\lambda}}({\mathbb{R}}^n)$ for some suitable indexes ${\lambda}$, ${\lambda}_1$, ${\lambda}_2$ and $p_1$, $p_2$, q, then $b{\in}BMO({\mathbb{R}}^n)$, as well as that the compactness of $[b,{\mathcal{I}}_{\alpha}]_i$ for i = 1 or 2 from $L^{p_1,{\lambda}_1}({\mathbb{R}}^n){\times}L^{p_2,{\lambda}_2}({\mathbb{R}}^n)$ to $L^{q,{\lambda}}({\mathbb{R}}^n)$ implies that $b{\in}CMO({\mathbb{R}}^n)$ (the closure in $BMO({\mathbb{R}}^n)$of the space of $C^{\infty}({\mathbb{R}}^n)$ functions with compact support). These results together with some previous ones give a new characterization of $BMO({\mathbb{R}}^n)$ functions or $CMO({\mathbb{R}}^n)$ functions in essential ways.

ESTIMATE FOR BILINEAR CALDERÓN-ZYGMUND OPERATOR AND ITS COMMUTATOR ON PRODUCT OF VARIABLE EXPONENT SPACES

  • Guanghui, Lu;Shuangping, Tao
    • 대한수학회보
    • /
    • 제59권6호
    • /
    • pp.1471-1493
    • /
    • 2022
  • The goal of this paper is to establish the boundedness of bilinear Calderón-Zygmund operator BT and its commutator [b1, b2, BT] which is generated by b1, b2 ∈ BMO(ℝn) (or ${\dot{\Lambda}}_{\alpha}$(ℝn)) and the BT on generalized variable exponent Morrey spaces 𝓛p(·),𝜑(ℝn). Under assumption that the functions 𝜑1 and 𝜑2 satisfy certain conditions, the authors proved that the BT is bounded from product of spaces 𝓛p1(·),𝜑1(ℝn)×𝓛p2(·),𝜑2(ℝn) into space 𝓛p(·),𝜑(ℝn). Furthermore, the boundedness of commutator [b1, b2, BT] on spaces Lp(·)(ℝn) and on spaces 𝓛p(·),𝜑(ℝn) is also established.