References
- A. Almeida and D. Drihem, Maximal, potential and singular type operators on Herz spaces with variable exponents, J. Math. Anal. Appl. 39 (2012), no. 2, 781-795.
- M. Christ and L. Grafakos, Best constants for two nonconvolution inequalities, Proc. Amer. Math. Soc. 123 (1995), no. 6, 1687-1693. https://doi.org/10.1090/S0002-9939-1995-1239796-6
- Z. Fu, Z. Liu, S. Lu, and H. Wang, Characterization for commutators of n-dimensional fractional Hardy operators, Sci. China Ser. A 50 (2007), no. 10, 1418-1426. https://doi.org/10.1007/s11425-007-0094-4
- J. L. Wu, Boundedness of multilinear commutators of fractional Hardy operators, Acta Math. Sci. Ser. A Chin. Ed. 31 (2011), no. 4, 1055-1062.
-
J. L. Wu and Q. G. Liu,
${\lambda}$ -central BMO estimates for higher order commutators of Hardy operators, Commun. Math. Res. In Prss. - J. L. Wu and J. M. Wang, Boundedness of multilinear commutators of fractional Hardy operators, Appl. Math. J. Chinese Univ. Ser. A 25 (2010), no. 1, 115-121.
- J. L. Wu and P. Zhang, Boundedness of commutators of the fractional Hardy operators on Herz-Morrey spaces with variable exponent, Adv. Math. (China), In Press.
- J. L. Wu and P. Zhang, Boundedness of multilinear Hardy type operators on product of Herz-Morrey spaces with variable exponent, Appl. Math. J. Chinese Univ. Ser. A 28 (2013), no. 2, 154-164.
- P. Zhang and J. L. Wu, Boundedness of fractional Hardy type operators on Herz-Morrey spaces with variable exponent, J. Math. Practice Theory 42 (2013), no. 7, 247-254.
- W. Orlicz, Uber konjugierte exponentenfolgen, Studia Math. 3 (1931), no. 3, 200-212. https://doi.org/10.4064/sm-3-1-200-211
- H. Nakano, Modulared Semi-Ordered Linear Spaces, Maruzen Co. Ltd., Tokyo, 1950.
- H. Nakano, Topology of Linear Topological Spaces, Maruzen Co. Ltd., Tokyo, 1951.
- M. Ruzicka, Electrorheological Fluids: Modeling and Mathematical Theory, New York, Springer, vol. 1748, Lecture Notes in Math., 2000.
-
L. Diening and M. Ruzicka, Calderon-Zygmund operators on generalized Lebesgue spaces
$L^{p({\cdot})}$ and problems related to fluid dynamics, J. Reine Angew. Math. 563 (2003), 197-220. -
O. Kovacik and J. Rakosnik, On spaces
$L^{p(x)}$ and$W^{k,p(x)}$ , Czechoslovak Math. J. 41 (1991), no. 4, 592-618. - D. Cruz-Uribe, L. Diening, and A. Fiorenza, A new proof of the boundedness of maximal operators on variable Lebesgue spaces, Boll. Unione Mat. Ital. 2 (2009), no. 1, 151-173.
-
D. Cruz-Uribe, A. Fiorenza, J. Martell, and C. Perez, The boundedness of classical operators on variable
$L^p$ spaces, Ann. Acad. Sci. Fenn. Math. 31 (2006), no. 1, 239-264. -
D. Cruz-Uribe, A. Fiorenza, and C. Neugebauer, The maximal function on variable
$L^p$ spaces, Ann. Acad. Sci. Fenn. Math. 28 (2003), no. 1, 223-238. -
L. Diening, Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces
$L^{p({\cdot})}$ and$W^{k,p({\cdot})}$ , Math. Nachr. 268 (2004), 31-43. https://doi.org/10.1002/mana.200310157 -
L. Diening, Maximal functions on generalized Lebesgue spaces
$L^{p({\cdot})}$ , Math. Inequal. Appl. 7 (2004), no. 2, 245-253. - L. Diening, Maximal functions on Musielak-Orlicz spaces and generalized Lebesgue spaces, Bull. Sci. Math. 129 (2005), no. 8, 657-700. https://doi.org/10.1016/j.bulsci.2003.10.003
- L. Diening, P. Harjulehto, P. Hasto, Y. Mizuta, and T. Shimomura, Maximal functions in variable exponent spaces: limiting cases of the exponent, Ann. Acad. Sci. Fenn. Math. 34 (2009), no. 2, 503-522.
- M. Izuki, Fractional integrals on Herz-Morrey spaces with variable exponent, Hiroshima Math. J. 40 (2010), no. 3, 343-355.
- V. Kokilashvili and S. Samko, On Sobolev theorem for Riesz type potentials in Lebesgue spaces with variable exponent, Z. Anal. Anwendungen 22 (2003), no. 4, 899-910.
-
T. Kopaliani, Infimal convolution and Muckenhoupt
$A_{p({\cdot})}$ condition in variable$L^p$ spaces, Arch. Math. 89 (2007), no. 2, 185-192. https://doi.org/10.1007/s00013-007-2035-4 -
A. Lerner, On some questions related to the maximal operator on variable
$L^p$ spaces, Trans. Amer. Math. Soc. 362 (2010), no. 8, 4229-4242. https://doi.org/10.1090/S0002-9947-10-05066-X -
A. Nekvinda, Hardy-Littlewood maximal operator on
$L^{p(x)}(\mathbb{R}^n)$ , Math. Inequal. Appl. 7 (2004), no. 2, 255-265. -
L. Pick and M. Ruzicka, An example of a space
$L^{p({\cdot})}$ on which the Hardy-Littlewood maximal operator is not bounded, Expo. Math. 19 (2001), no. 4, 369-371. https://doi.org/10.1016/S0723-0869(01)80023-2 -
S. Samko, Convolution and potential type operators in
$L^{p(x)}(\mathbb{R}^n)$ , Integral Transform. Spec. Funct. 7 (1998), no. 3-4, 261-284. https://doi.org/10.1080/10652469808819204
Cited by
- Boundedness for Higher Order Commutators of Fractional Integrals on Variable Exponent Herz–Morrey Spaces vol.14, pp.5, 2017, https://doi.org/10.1007/s00009-017-1002-y
- Boundedness of Riesz-Type Potential Operators on Variable Exponent Herz–Morrey Spaces vol.69, pp.9, 2018, https://doi.org/10.1007/s11253-018-1438-7