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WEAK BOUNDEDNESS FOR THE COMMUTATOR

OF n-DIMENSIONAL ROUGH HARDY OPERATOR

ON HOMOGENEOUS HERZ SPACES AND CENTRAL

MORREY SPACES

Lei Ji, Mingquan Wei, and Dunyan Yan

Abstract. In this paper, we study the boundedness of the commutator

Hb
Ω formed by the rough Hardy operator HΩ and a locally integrable

function b from homogeneous Herz spaces to homogeneous weak Herz
spaces. In addition, the weak boundedness of Hb

Ω on central Morrey

spaces is also established.

1. Introduction

The classical Hardy operator, initially introduced by Hardy [19], was ex-
tended to the n-dimensional setting by Christ and Grafakos [5]:

Hf(x) :=
1

|x|n

∫
|t|<|x|

f(t)dt, x ∈ Rn\{0},

where f is a locally integrable function on Rn. The dual operator of H, denoted
by H∗, is defined by

H∗f(x) =

∫
|t|≥|x|

f(t)

|t|n
dt, x ∈ Rn\{0}.

Obviously, H and H∗ satisfy∫
Rn

g(x)Hf(x)dx =

∫
Rn

f(x)H∗g(x)dx

for some suitable functions g.
It was proven in [5] that H is bounded on Lp(Rn), and so is H∗ by duality.

Hardy-type operators, as basic average operators, have wide applications in
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harmonic analysis and some related fields, see [2,6,15,16,20,29,31,33,37]. On
the other hand, the study of the commutators has attracted much attention
recently. In [11], the commutators of H and H∗ are defined by

Hbf := b(Hf)−H(fb),

and

H∗
b f := b(H∗f)−H∗(fb),

respectively, where b is a locally integrable function on Rn. The boundedness of
Hb andH∗

b has been intensively studied, see e.g. [24,25]. Commonly, the symbol
functions b in the commutatorsHb andH∗

b are central bounded mean oscillation
functions, since both H and H∗ are centrosymmetric. Fu et al. [11] proved that
Hb andH∗

b are bounded on Lp(Rn) if and only if b ∈ CBMOmax(p,p′)(Rn), where
1 < p < ∞. CBMOp(Rn) denotes the central bounded mean oscillation space
introduced by Lu and Yang [26], which is given by the condition

∥f∥CBMOp
:= sup

r>0

(
1

|B(0, r)|

∫
B(0,r)

|f(x)− fB(0,r)|pdx

) 1
p

< ∞,

where 1 ≤ p < ∞, andB(0, r) denotes the ball centered at the origin with radius
r. The space CBMOp(Rn) can be regarded as a local version of BMO(Rn) at
the origin. However, their properties may be quite different, since the absence
of the famous John–Nirenberg inequality for the space CBMOp(Rn). Here, the
space BMO(Rn), initially introduced by Fefferman [7], is the bounded mean
oscillation space defined similar to CBMOp(Rn), except that we take the supre-
mum over all the balls in Rn instead of the balls centered at the origin.

Recently, the boundedness of Hb and H∗
b has been extended to several func-

tion spaces, such as central Morrey spaces [8, 21, 38] and homogeneous Herz
spaces [10, 11, 36]. Moreover, the symbol functions b in Hb and H∗

b have been
considered in different settings, such as λ-central bounded mean oscillation
spaces [39], central Campanato spaces [32] and mixed central bounded mean
oscillation spaces [36].

As is well known, the study of operators with rough kernels is an impor-
tant branch in harmonic analysis. Inspired by the Calderón–Zygmund singular
integral operator with rough kernels, Fu et al. [13] gave the definition of the
n-dimensional rough Hardy operator HΩ:

HΩf(x) :=
1

|x|n

∫
|t|<|x|

Ω(x− t)f(t)dt, x ∈ Rn\{0},

where Ω ∈ Ls(Sn−1) (1 ≤ s < ∞) is homogeneous of degree zero. The commu-
tator Hb

Ω formed by the n-dimensional rough Hardy operator HΩ and a locally
integrable function b was also defined in [13] as follows:

Hb
Ωf(x) :=

1

|x|n

∫
|t|<|x|

(b(x)− b(t))Ω(x− t)f(t)dt, x ∈ Rn\{0}.
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The definitions of H∗
Ω and Hb,∗

Ω can be formulated similarly, see [12]. When
Ω ≡ 1, we have HΩ = H and Hb

Ω = Hb. Fu et al. [13, Theorem 3.1] proved
that Hb

Ω is bounded on Lp(Rn) for b ∈ CBMOmax(p,u)(Rn), where 1 < p < ∞,
1/u = 1/p′−1/s and s > p′. Besides, Fu et al. [12, Theorem 3.1] also established

the boundedness of Hb
Ω and Hb,∗

Ω on Lp(Rn) for b ∈ CBMOmax(p,u)(Rn), where
1 < p < ∞ and 1/u = 1/p′ − 1/s for some s > 1. Furthermore, the authors
[13, Theorem 3.2] extended the boundedness ofHb

Ω to homogeneous Herz spaces
(see Section 2 for the definition), which can be formulated as follows.

Proposition 1.1. Suppose 1 < q < ∞, 0 < p1 ≤ p2 < ∞ and 1/u = 1/q′−1/s.
Let s > q′ and b ∈ CBMOmax(q,u)(Rn). If α < n/u, then Hb

Ω is bounded from

K̇α,p1
q (Rn) to K̇α,p2

q (Rn).

Note that the boundedness ofHb
Ω was also extended to central Morrey spaces

in [13] and Morrey–Herz spaces in [14].
Recently, the commutators formed by BMO(Rn) functions and some im-

portant operators in harmonic analysis have been proven to be weak bounded
on several function spaces, see, for instance, [18, 34, 35]. To study the weak
boundedness of Hb and H∗

b , Wang and Zhou [34] introduced the weak central
bounded mean oscillation space WCBMOp(Rn). For 1 < p < ∞, a locally
integrable function f on Rn is said to belong to WCBMOp(Rn) if

∥f∥WCBMOp

:= sup
r>0

1

|B(0, r)|
1
p

sup
η>0

η|{x ∈ B(0, r) : |f(x)− fB(0,r)| > η}|
1
p < ∞,

whereB(0, r) is the ball centered at the origin with radius r. Briefly, Wp(Rn) :=
WCBMOp(Rn). Obviously, CBMOp(Rn) ⊆ Wp(Rn) for 1 < p < ∞. Moreover,
Wp2

(Rn) ⊆ Wp1
(Rn) and the inclusion is proper if 1 < p1 < p2 < ∞ by

virtue of [34, Proposition 4.1]. Therefore, it is meaningful to consider the space
Wp(Rn). In [34, Theorem 5.1], the authors proved thatHb andH∗

b are bounded
from Lp(Rn) to Lp,∞(Rn) if and only if b ∈ CBMOp′(Rn) ∩ Wp(Rn), where
1 < p < ∞ and 1/p + 1/p′ = 1. In [23, Theorem 3.1], we further extend this
result by providing a similar characterization of the boundedness for Hb and
H∗

b from central Morrey spaces to weak central Morrey spaces.
Inspired by [13,23,34], it is natural for us to consider the weak boundedness

for the commutator of the rough Hardy operator HΩ. More precisely, similar to
Proposition 1.1, we give the sufficient conditions on the symbol b to guarantee
the boundedness of Hb

Ω from homogeneous Herz spaces to homogeneous weak
Herz spaces. In addition, we also obtain the boundedness of Hb

Ω from central
Morrey spaces to weak central Morrey spaces. Throughout this paper, the
letter C denotes constants which are independent of the main variables and
may change from one occurrence to another.
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2. Preliminaries and some lemmas

We first give some notations. Let Bk = {x ∈ Rn : |x| ≤ 2k}, Ck = Bk \Bk−1

for k ∈ Z. Suppose χk = χCk
, where χE is the characteristic of set E. Following

Lu and Yang [27], the homogeneous Herz space K̇α,p
q (Rn) is given by

K̇α,p
q (Rn) := {f ∈ Lq

loc(R
n\{0}) : ∥f∥K̇α,p

q
< ∞},

where

∥f∥K̇α,p
q

:=

{ ∞∑
k=−∞

2kαp∥fχk∥pLq

} 1
p

for α ∈ R and 0 < p, q ≤ ∞. The usual modifications are made when p = ∞
or q = ∞. Similar to the definition of weak Lebesgue spaces, Hu et al. [22]

introduced the homogeneous weak Herz space WK̇α,p
q (Rn) endowed with the

expression

∥f∥WK̇α,p
q

:= sup
η>0

η

{ ∞∑
k=−∞

2kαp|{x ∈ Ck : |f(x)| > η}|
p
q

} 1
p

< ∞

for α ∈ R, 0 < q < ∞ and 0 < p ≤ ∞. The usual modifications are made when
p = ∞.

Except for Herz spaces, Morrey spaces are also important extensions of
Lebesgue spaces, which were introduced by Morrey [28] in 1938. Recently,
the mapping properties of many important operators on Morrey-type spaces
have been established, see, for instance, [3, 4, 9, 17,30]. We now recall the defi-

nition of the central Morrey space Ṁp,λ(Rn), which was introduced by Álvarez
et al. [1]:

Ṁp,λ(Rn) := {f ∈ Lp
loc(R

n) : ∥f∥Ṁp,λ < ∞},
where

∥f∥Ṁp,λ := sup
r>0

1

|B(0, r)|λ

(
1

|B(0, r)|

∫
B(0,r)

|f |pdx

) 1
p

for 1 < p < ∞ and −1/p ≤ λ < 0. The weak central Morrey space WṀp,λ(Rn)
can be defined by

∥f∥WṀp,λ := sup
r>0

1

|B(0, r)|λ+
1
p

sup
η>0

η|{x ∈ B(0, r) : |f(x)| > η}|
1
p < ∞

for 1 < p < ∞ and −1/p ≤ λ < 0.
The following lemma gives the proper inclusion for CBMOp(Rn).

Lemma 2.1 ([11]). If 1 ≤ p < q < ∞, then CBMOq(Rn) ⊆ CBMOp(Rn) and
the inclusion is proper.

We also have the following basic estimates for the space CBMO1(Rn) given
by Fu et al. [11].
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Lemma 2.2. Suppose b ∈ CBMO1(Rn) and i, k ∈ Z. Then

|b(x)− bBk
| ≤ |b(x)− bBi

|+ C|i− k|∥b∥CBMO1
.

3. Main theorems

Now we are in a position to present the weak boundedness of the commutator
Hb

Ω. We can formulate the first main result as follows.

Theorem 3.1. Suppose 1 < q < ∞, 0 < p1 ≤ p2 < ∞, s > q′ and 1/u =
1/q′ − 1/s. Let b ∈ CBMOu(Rn) ∩Wq(Rn). If α < n/u, then Hb

Ω is bounded

from K̇α,p1
q (Rn) to WK̇α,p2

q (Rn).

Proof. For simplicity, we write
∞∑

i=−∞
f(x)χi(x) =

∞∑
i=−∞

fi(x).

For f ∈ K̇α,p1
q (Rn), we deduce that

ηq|{x ∈ Ck : |Hb
Ωf(x)| > η}|

= ηq
∣∣∣∣{x ∈ Ck :

∣∣∣∣ 1

|x|n

∫
|t|<|x|

(b(x)− b(t))Ω(x− t)f(t)dt

∣∣∣∣ > η

}∣∣∣∣
≤ Cηq

∣∣∣∣{x ∈ Ck : 2−kn

∫
Bk

|(b(x)− b(t))Ω(x− t)f(t)|dt > η

}∣∣∣∣
≤ Cηq

∣∣∣∣{x ∈ Ck : 2−kn
k∑

i=−∞

∫
Ci

|(b(x)− b(t))Ω(x− t)f(t)|dt > η

}∣∣∣∣
≤ Cηq

∣∣∣∣{x ∈ Ck : 2−kn
k∑

i=−∞

∫
Ci

|(b(x)− bBk
)Ω(x− t)f(t)|dt > η

2

}∣∣∣∣
+ Cηq

∣∣∣∣{x ∈ Ck : 2−kn
k∑

i=−∞

∫
Ci

|(b(t)− bBk
)Ω(x− t)f(t)|dt > η

2

}∣∣∣∣
=: I1 + I2.

For x ∈ Ck, t ∈ Ci and i ≤ k, we have 0 ≤ |x− t| ≤ |x|+ |t| ≤ 2k+2i ≤ 2 ·2k =
2k+1, and then∫

Ci

|Ω(x− t)|sdt ≤
∫ 2k+1

0

∫
Sn−1

|Ω(x′)|sdσ(x′)rn−1dr ≤ C2kn.

Note that 1/q+1/s+1/u = 1, where 1/u = 1/q′−1/s. By Hölder’s inequality,
we get that

I1 ≤ Cηq
∣∣∣∣{x ∈ Ck : 2−kn

k∑
i=−∞

|b(x)− bBk
|
∫
Ci

|Ω(x− t)f(t)|dt > η

2

}∣∣∣∣
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≤ Cηq
∣∣∣∣{x ∈ Ck : 2−kn|b(x)− bBk

|

×
k∑

i=−∞

(∫
Ci

|f(t)|qdt
) 1

q
(∫

Ci

|Ω(x− t)|sdt
) 1

s

|Bi|
1
u >

η

2

}∣∣∣∣
≤ Cηq

∣∣∣∣{x ∈ Ck : 2−kn|b(x)− bBk
|

k∑
i=−∞

∥fi∥q2
kn
s 2

in
u >

η

2

}∣∣∣∣
≤ C

( k∑
i=−∞

∥fi∥q2−kn+ kn
s + in

u |Bk|
1
q

)q
ηq

|Bk|
|{x ∈ Bk : |b(x)− bBk

| > η}|

≤ C∥b∥qWq

( k∑
i=−∞

2
(i−k)n

u ∥fi∥q
)q

.

Applying Lemma 2.2, we have that

I2 = C

∫
{x∈Ck:2−kn

∑k
i=−∞

∫
Ci

|(b(t)−bBk
)Ω(x−t)f(t)|dt> η

2 }
ηqdx

≤ C

∫
Ck

(
2−kn

k∑
i=−∞

∫
Ci

|(b(t)− bBk
)Ω(x− t)f(t)|dt

)q

dx

≤ C2−knq

∫
Ck

( k∑
i=−∞

∫
Ci

|(b(t)− bBi
)Ω(x− t)f(t)|dt

)q

dx

+ C2−knq∥b∥qCBMO1

∫
Ck

( k∑
i=−∞

(k − i)

∫
Ci

|Ω(x− t)f(t)|dt
)q

dx

=: I21 + I22.

By using Hölder’s inequality with 1/q + 1/s+ 1/u = 1, one has that

I21 ≤ C2−knq

∫
Ck

{ k∑
i=−∞

(∫
Ci

|f(t)|qdt
) 1

q

×
(∫

Ci

|Ω(x− t)|sdt
) 1

s
(∫

Ci

|b(t)− bBi |udt
) 1

u
}q

dx

≤ C2−knq

∫
Ck

{ k∑
i=−∞

∥fi∥q2
kn
s

(∫
Ci

|b(t)− bBi |udt
) 1

u
}q

dx

≤ C

{ k∑
i=−∞

2−kn2
kn
q 2

kn
s 2

in
u

(
1

|Bi|

∫
Bi

|b(t)− bBi
|udt

) 1
u

∥fi∥q
}q

≤ C∥b∥qCBMOu

( k∑
i=−∞

2
(i−k)n

u ∥fi∥q
)q

.
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Similar to the estimate of I21, using Lemma 2.1 and Hölder’s inequality again,
we conclude that

I22 ≤ C2−knq∥b∥qCBMO1

×
∫
Ck

{ k∑
i=−∞

(k − i)

(∫
Ci

|f(t)|qdt
) 1

q
(∫

Ci

|Ω(x− t)|sdt
) 1

s

|Bi|
1
u

}q

dx

≤ C∥b∥qCBMO1

( k∑
i=−∞

(k − i)2−kn2
kn
q 2

kn
s 2

in
u ∥fi∥q

)q

≤ C∥b∥qCBMOu

( k∑
i=−∞

(k − i)2
(i−k)n

u ∥fi∥q
)q

.

In view of I1, I21 and I22, it is true for 0 < p1 ≤ p2 < ∞ that

η

{ ∞∑
k=−∞

2kαp2 |{x ∈ Ck : |Hb
Ωf(x)| > η}|

p2
q

} 1
p2

=

{ ∞∑
k=−∞

2kαp2(ηq|{x ∈ Ck : |Hb
Ωf(x)| > η}|)

p2
q

} 1
p2

≤
{ ∞∑

k=−∞

2kαp1(ηq|{x ∈ Ck : |Hb
Ωf(x)| > η}|)

p1
q

} 1
p1

≤ C

( ∞∑
k=−∞

2kαp1∥b∥p1

Wq

( k∑
i=−∞

2
(i−k)n

u ∥fi∥q
)p1

) 1
p1

+ C

( ∞∑
k=−∞

2kαp1∥b∥p1

CBMOu

( k∑
i=−∞

2
(i−k)n

u ∥fi∥q
)p1

) 1
p1

+ C

( ∞∑
k=−∞

2kαp1∥b∥p1

CBMOu

( k∑
i=−∞

(k − i)2
(i−k)n

u ∥fi∥q
)p1

) 1
p1

=: S.

Therefore, we get

S ≤ C

( ∞∑
k=−∞

2kαp1

( k∑
i=−∞

(k − i)2
(i−k)n

u ∥fi∥q
)p1

) 1
p1

.

When 0 < p1 ≤ 1 and α < n/u, we deduce that

Sp1 ≤ C

∞∑
k=−∞

2kαp1

( k∑
i=−∞

(k − i)2
(i−k)n

u ∥fi∥q
)p1
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= C

∞∑
k=−∞

( k∑
i=−∞

2iα∥fi∥q(k − i)2(i−k)(n
u−α)

)p1

≤ C

∞∑
k=−∞

k∑
i=−∞

2iαp1∥fi∥p1
q (k − i)p12(i−k)(n

u−α)p1

= C

∞∑
i=−∞

2iαp1∥fi∥p1
q

∞∑
k=i

(k − i)p12(i−k)(n
u−α)p1

= C∥f∥p1

K̇
α,p1
q

.

For p1 > 1 and α < n/u, it follows from Hölder’s inequality that

Sp1 ≤ C

∞∑
k=−∞

( k∑
i=−∞

2iα∥fi∥q(k − i)2(i−k)(n
u−α)

)p1

≤ C

∞∑
k=−∞

( k∑
i=−∞

2iαp1∥fi∥p1
q 2(i−k)(n

u−α)
p1
2

×
( k∑

i=−∞
(k − i)p

′
12(i−k)(n

u−α)
p′1
2

) p1
p′1
)

= C

∞∑
i=−∞

2iαp1∥fi∥p1
q

∞∑
k=i

2(i−k)(n
u−α)

p1
2

= C∥f∥p1

K̇
α,p1
q

.

As a consequence, we arrive at

S ≤ C∥f∥K̇α,p1
q

.

Thus, there holds

∥Hb
Ωf∥WK̇

α,p2
q

= sup
η>0

η

{ ∞∑
k=−∞

2kαp2 |{x ∈ Ck : |Hb
Ωf(x)| > η}|

p2
q

} 1
p2

≤ C∥f∥K̇α,p1
q

.
□

As for the boundedness of Hb
Ω from central Morrey spaces to weak central

Morrey spaces, we have the following theorem.

Theorem 3.2. Suppose 1 < p < ∞, −1/p ≤ λ < 0, s > p′ and 1/u =

1/p′−1/s. Let b ∈ CBMOu(Rn)∩Wp(Rn). Then Hb
Ω is bounded from Ṁp,λ(Rn)

to WṀp,λ(Rn).

Proof. For a fixed ball B = B(0, r) ⊂ Rn, there is no loss of generality in
assuming B(0, r) = Bk0 with k0 ∈ Z. Keep in mind that

∞∑
i=−∞

f(x)χi(x) =

∞∑
i=−∞

fi(x).
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For f ∈ Ṁp,λ(Rn), we have that

ηp

|Bk0
|1+λp

|{x ∈ Bk0
: |Hb

Ωf(x)| > η}|

=
ηp

|Bk0 |1+λp

∣∣∣∣{x ∈ Bk0 :

∣∣∣∣ 1

|x|n

∫
|t|<|x|

(b(x)− b(t))Ω(x− t)f(t)dt

∣∣∣∣ > η

}∣∣∣∣
≤ Cηp

|Bk0 |1+λp

k0∑
k=−∞

∣∣∣∣{x ∈ Ck : 2−kn

∫
Bk

|(b(x)− b(t))Ω(x− t)f(t)|dt > η

}∣∣∣∣
≤ Cηp

|Bk0
|1+λp

k0∑
k=−∞

∣∣∣∣{x ∈ Ck : 2−kn
k∑

i=−∞

∫
Ci

|(b(x)− b(t))Ω(x− t)f(t)|dt > η

}∣∣∣∣
≤ Cηp

|Bk0
|1+λp

k0∑
k=−∞

∣∣∣∣{x ∈ Ck : 2−kn
k∑

i=−∞

∫
Ci

|(b(x)− bBk
)Ω(x− t)f(t)|dt > η

2

}∣∣∣∣
+

Cηp

|Bk0
|1+λp

k0∑
k=−∞

∣∣∣∣{x ∈ Ck : 2−kn
k∑

i=−∞

∫
Ci

|(b(t)− bBk
)Ω(x− t)f(t)|dt > η

2

}∣∣∣∣
=: I1 + I2.

Similar to the proof of Theorem 3.1, for x ∈ Ck, t ∈ Ci and i ≤ k, there holds
that 0 ≤ |x− t| ≤ 2k+1, and hence∫

Ci

|Ω(x− t)|sdt ≤
∫ 2k+1

0

∫
Sn−1

|Ω(x′)|sdσ(x′)rn−1dr ≤ C2kn.

Note that 1/p+1/s+1/u = 1, where 1/u = 1/p′−1/s. The Hölder’s inequality
allows us to get that

I1 ≤ Cηp

|Bk0 |1+λp

k0∑
k=−∞

∣∣∣∣{x ∈ Ck : 2−kn
k∑

i=−∞
|b(x)− bBk

|
∫
Ci

|Ω(x− t)f(t)|dt > η

2

}∣∣∣∣
≤ Cηp

|Bk0
|1+λp

k0∑
k=−∞

∣∣∣∣{x ∈ Ck : 2−kn|b(x)− bBk
|

×
k∑

i=−∞

(∫
Ci

|f(t)|pdt
) 1

p
(∫

Ci

|Ω(x− t)|sdt
) 1

s

|Bi|
1
u >

η

2

}∣∣∣∣
≤ Cηp

|Bk0
|1+λp

k0∑
k=−∞

∣∣∣∣{x ∈ Ck : 2−kn|b(x)− bBk
|

k∑
i=−∞

∥fi∥p2
kn
s 2

in
u >

η

2

}∣∣∣∣
≤ C

|Bk0
|1+λp

k0∑
k=−∞

( k∑
i=−∞

∥fi∥p2−kn+ kn
s + in

u |Bk|
1
p

)p
ηp

|Bk|
|{x ∈ Bk : |b(x)− bBk

| > η}|

≤ C

|Bk0
|1+λp

∥b∥pWp

k0∑
k=−∞

( k∑
i=−∞

2
(i−k)n

u ∥fi∥p
)p

.
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Lemma 2.2 gives that

I2 =
C

|Bk0 |1+λp

k0∑
k=−∞

∫
{x∈Ck:2−kn

∑k
i=−∞

∫
Ci

|(b(t)−bBk
)Ω(x−t)f(t)|dt> η

2 }
ηpdx

≤ C

|Bk0
|1+λp

k0∑
k=−∞

∫
Ck

(
2−kn

k∑
i=−∞

∫
Ci

|(b(t)− bBk
)Ω(x− t)f(t)|dt

)p

dx

≤ C

|Bk0 |1+λp

k0∑
k=−∞

2−knp

∫
Ck

( k∑
i=−∞

∫
Ci

|(b(t)− bBi)Ω(x− t)f(t)|dt
)p

dx

+
C

|Bk0
|1+λp

∥b∥pCBMO1

k0∑
k=−∞

2−knp

∫
Ck

( k∑
i=−∞

(k − i)

∫
Ci

|Ω(x− t)f(t)|dt
)p

dx

=: I21 + I22.

For I21, by using Hölder’s inequality with 1/p+ 1/s+ 1/u = 1, we can obtain
that

I21 ≤ C

|Bk0
|1+λp

k0∑
k=−∞

2−knp

∫
Ck

{ k∑
i=−∞

(∫
Ci

|f(t)|pdt
) 1

p

×
(∫

Ci

|Ω(x− t)|sdt
) 1

s
(∫

Ci

|b(t)− bBi
|udt

) 1
u
}p

dx

≤ C

|Bk0 |1+λp

k0∑
k=−∞

2−knp

∫
Ck

{ k∑
i=−∞

∥fi∥p2
kn
s 2

in
u

×
(

1

|Bi|

∫
Bi

|b(t)− bBi |udt
) 1

u
}p

dx

≤ C

|Bk0
|1+λp

∥b∥pCBMOu

k0∑
k=−∞

( k∑
i=−∞

2−kn2
kn
p 2

kn
s 2

in
u ∥fi∥p

)p

=
C

|Bk0
|1+λp

∥b∥pCBMOu

k0∑
k=−∞

( k∑
i=−∞

2
(i−k)n

u ∥fi∥p
)p

.

For I22, we use Lemma 2.1 and Hölder’s inequality to get that

I22 ≤ C

|Bk0
|1+λp

∥b∥pCBMO1

k0∑
k=−∞

2−knp

×
∫
Ck

( k∑
i=−∞

(k − i)

(∫
Ci

|f(t)|pdt
) 1

p
(∫

Ci

|Ω(x− t)|sdt
) 1

s

|Bi|
1
u

)p

dx

≤ C

|Bk0 |1+λp
∥b∥pCBMO1

k0∑
k=−∞

( k∑
i=−∞

(k − i)2−kn2
kn
p 2

kn
s 2

in
u ∥fi∥p

)p



WEAK BOUNDEDNESS FOR COMMUTATOR 1063

≤ C

|Bk0 |1+λp
∥b∥pCBMOu

k0∑
k=−∞

( k∑
i=−∞

(k − i)2
(i−k)n

u ∥fi∥p
)p

.

Following the estimates of I1, I21 and I22, we only need to prove

1

|Bk0
|1+λp

k0∑
k=−∞

( k∑
i=−∞

(k − i)2
(i−k)n

u ∥fi∥p
)p

≤ C∥f∥p
Ṁp,λ

.

Since 1 < p < ∞, a simple calculation yields that

1

|Bk0
|1+λp

k0∑
k=−∞

( k∑
i=−∞

(k − i)2
(i−k)n

u ∥fi∥p
)p

≤ 1

|Bk0 |1+λp

k0∑
k=−∞

( k∑
i=−∞

∥fi∥pp2
(i−k)np

2u ×
( k∑

i=−∞
(k − i)p

′
2

(i−k)np′
2u

) p
p′
)

≤ C

|Bk0
|1+λp

k0∑
i=−∞

∥fi∥pp
k0∑
k=i

2
(i−k)np

2u

≤ C

|Bk0 |1+λp

∫
⋃k0

i=−∞(Bi\Bi−1)

|f(t)|pdt

=
C

|Bk0
|1+λp

∫
Bk0

|f(t)|pdt

≤ C∥f∥p
Ṁp,λ

.

Therefore, we deduce

∥Hb
Ωf∥

p

WṀp,λ

= sup
r>0

1

|B(0, r)|1+λp
sup
η>0

ηp|{x ∈ B(0, r) : |Hb
Ωf(x)| > η}| ≤ C∥f∥p

Ṁp,λ
. □

By taken λ = −1/p in Theorem 3.2, we can obtain the following corollary,
which is also new and has its own interests in the study of the weak boundedness
of operators.

Corollary 3.3. Suppose 1 < p < ∞ and 1/u = 1/p′ − 1/s. Let s > p′ and
b ∈ CBMOu(Rn) ∩Wp(Rn). Then Hb

Ω is bounded from Lp(Rn) to Lp,∞(Rn).
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