• Title/Summary/Keyword: Molecular structures

Search Result 1,356, Processing Time 0.026 seconds

Complete Chloroplast DNA Sequence from a Korean Endemic Genus, Megaleranthis saniculifolia, and Its Evolutionary Implications

  • Kim, Young-Kyu;Park, Chong-wook;Kim, Ki-Joong
    • Molecules and Cells
    • /
    • v.27 no.3
    • /
    • pp.365-381
    • /
    • 2009
  • The chloroplast DNA sequences of Megaleranthis saniculifolia, an endemic and monotypic endangered plant species, were completed in this study (GenBank FJ597983). The genome is 159,924 bp in length. It harbors a pair of IR regions consisting of 26,608 bp each. The lengths of the LSC and SSC regions are 88,326 bp and 18,382 bp, respectively. The structural organizations, gene and intron contents, gene orders, AT contents, codon usages, and transcription units of the Megaleranthis chloroplast genome are similar to those of typical land plant cp DNAs. However, the detailed features of Megaleranthis chloroplast genomes are substantially different from that of Ranunculus, which belongs to the same family, the Ranunculaceae. First, the Megaleranthis cp DNA was 4,797 bp longer than that of Ranunculus due to an expanded IR region into the SSC region and duplicated sequence elements in several spacer regions of the Megaleranthis cp genome. Second, the chloroplast genomes of Megaleranthis and Ranunculus evidence 5.6% sequence divergence in the coding regions, 8.9% sequence divergence in the intron regions, and 18.7% sequence divergence in the intergenic spacer regions, respectively. In both the coding and noncoding regions, average nucleotide substitution rates differed markedly, depending on the genome position. Our data strongly implicate the positional effects of the evolutionary modes of chloroplast genes. The genes evidencing higher levels of base substitutions also have higher incidences of indel mutations and low Ka/Ks ratios. A total of 54 simple sequence repeat loci were identified from the Megaleranthis cp genome. The existence of rich cp SSR loci in the Megaleranthis cp genome provides a rare opportunity to study the population genetic structures of this endangered species. Our phylogenetic trees based on the two independent markers, the nuclear ITS and chloroplast MatK sequences, strongly support the inclusion of the Megaleranthis to the Trollius. Therefore, our molecular trees support Ohwi's original treatment of Megaleranthis saniculifolia to Trollius chosenensis Ohwi.

Suppression of the TRIF-dependent signaling pathway of toll-like receptors by (E)-isopropyl 4-oxo-4-(2-oxopyrrolidin-1-yl)-2-butenoate

  • Park, Se-Jeong;Park, Hye-Jeong;Kim, Soo-Jung;Shin, Hwa-Jeong;Min, In-Soon;Koh, Kwang-Oh;Kim, Dae-Young;Youn, Hyung-Sun
    • BMB Reports
    • /
    • v.44 no.7
    • /
    • pp.468-472
    • /
    • 2011
  • Toll-like receptors (TLRs) are pattern recognition receptors that recognize molecular structures derived from microbes and initiate innate immunity. TLRs have two downstream signaling pathways, the MyD88- and TRIF-dependent pathways. Dysregulated activation of TLRs is closely linked to increased risk of many chronic diseases. Previously, we synthesized fumaryl pyrrolidinone, (E)-isopropyl 4-oxo-4-(2-oxopyrrolidin-1-yl)-2-butenoate (IPOP), which contains a fumaric acid isopropyl ester and pyrrolidinone, and demonstrated that it inhibits the activation of nuclear factor kappa B by inhibiting the MyD88-dependent pathway of TLRs. However, the effect of IPOP on the TRIF-dependent pathway remains unknown. Here, we report the effect of IPOP on signal transduction via the TRIF-dependent pathway of TLRs. IPOP inhibited lipopolysaccharide- or polyinosinic-polycytidylic acidinduced interferon regulatory factor 3 activation, as well as interferon-inducible genes such as interferon inducible protein-10. These results suggest that IPOP can modulate the TRIF-dependent signaling pathway of TLRs, leading to decreased inflammatory gene expression.

Morphological characterization and molecular phylogenetic analysis of Dolichospermum hangangense (Nostocales, Cyanobacteria) sp. nov. from Han River, Korea

  • Choi, Hye Jeong;Joo, Jae-Hyoung;Kim, Joo-Hwan;Wang, Pengbin;Ki, Jang-Seu;Han, Myung-Soo
    • ALGAE
    • /
    • v.33 no.2
    • /
    • pp.143-156
    • /
    • 2018
  • Dolichospermum is a filamentous and heterocytous cyanobacterium that is one of the commonly occurring phytoplanktons in the Han River of Korea. Morphological observations led to the identification of D. planctonicum-like filaments in seasonal water samples. In the present study, we successfully isolated these filaments using culture methods, and examined its morphology using light and scanning electron microscopy. The morphology of the D. planctonicumlike species differed from that of typical D. planctonicum; it had thin cylindrical-shaped akinetes, which were narrower towards the ends than at the center. This morphology is firstly described in the genus Dolichospermum. In addition, the akinetes in the filament developed solitarily and were distant from the heterocytes. Phylogenetic analysis of the 16S rRNA sequences showed that our Dolichospermum clustered with D. planctonicum and D. circinale, which have coiled trichome. However, phylogenetic analysis of the gene encoding rivulose-1,5-bisphosphate carboxylase (rbcLX) clearly separated our species from other Dolichospermum, forming a unique clade. Additionally, structures of D. planctonicum and D. hangangense strains were different type in Box-B and V3 region. These results demonstrated that the new Dolichospermum species was unique in morphology and molecular traits. Therefore, we propose this to be a new species belonging to genus Dolichospermum with the name Dolichospermum hangangense sp. nov.

Effect of the Addition of Si and Alkali Metal on the Viscosity and Molecular Behavior of Water Glass (Si와 알칼리 금속의 첨가에 따른 물유리의 점도 및 분자결합구조 특성변화)

  • Ryu, Young Bok;Lee, Man Sig
    • Applied Chemistry for Engineering
    • /
    • v.29 no.1
    • /
    • pp.112-116
    • /
    • 2018
  • In this study, the mixing characteristics of water glass and additives (Si, alkali metal), which are one of the main raw materials of silicate based binder used in the production of molds during casting process, were examined. Molecular structures of water glass, additives and mixtures were analyzed FT-IR and viscosity measurements and their correlation were compared. The addition of Si source to the water glass accelerated the Si networking in the material and increased the viscosity. When the alkali metal was added, the viscosity of the water glass decreased by suppressing the Si networking of the water glass. Viscosities of the water glass and lithium silicate (LS) mixtures increased when the content of LS was less than 20 wt% and gradually decreased when the content was more than 20 wt%. By adding KOH to the water glass, the viscosity could be lowered and it could be used effectively to mix with colloidal silica (CS) or potassium methyl siliconate (PMS).

Novel DOT1L ReceptorNatural Inhibitors Involved in Mixed Lineage Leukemia: a Virtual Screening, Molecular Docking and Dynamics Simulation Study

  • Raj, Utkarsh;Kumar, Himansu;Gupta, Saurabh;Varadwaj, Pritish Kumar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.3817-3825
    • /
    • 2015
  • Background: The human protein methyl-transferase DOT1L catalyzes the methylation of histone H3 on lysine 79 (H3K79) at homeobox genes and is also involved in a number of significant processes ranging from gene expression to DNA-damage response and cell cycle progression. Inhibition of DOT1L activity by shRNA or small-molecule inhibitors has been established to prevent proliferation of various MLL-rearranged leukemia cells in vitro, establishing DOT1L an attractive therapeutic target for mixed lineage leukemia (MLL). Most of the drugs currently in use for the MLL treatment are reported to have low efficacy, hence this study focused on various natural compounds which exhibit minimal toxic effects and high efficacy for the target receptor. Materials and Methods: Structures of human protein methyl-transferase DOT1L and natural compound databases were downloaded from various sources. Virtual screening, molecular docking, dynamics simulation and drug likeness studies were performed for those natural compounds to evaluate and analyze their anti-cancer activity. Results: The top five screened compounds possessing good binding affinity were identified as potential high affinity inhibitors against DOT1L's active site. The top ranking molecule amongst the screened ligands had a Glide g-score of -10.940 kcal/mol and Glide e-model score of -86.011 with 5 hydrogen bonds and 12 hydrophobic contacts. This ligand's behaviour also showed consistency during the simulation of protein-ligand complex for 20000 ps, which is indicative of its stability in the receptor pocket. Conclusions: The ligand obtained out of this screening study can be considered as a potential inhibitor for DOT1L and further can be treated as a lead for the drug designing pipeline.

Destruction of Giant Molecular Clouds by UV Radiation Feedback from Massive Stars

  • Kim, Jeong-Gyu;Kim, Woong-Tae;Ostriker, Eve C.;Skinne, M. Aaron
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.43.1-43.1
    • /
    • 2018
  • Star formation in galaxies predominantly takes place in giant molecular clouds (GMCs). While it is widely believed that UV radiation feedback from young massive stars can destroy natal GMCs by exciting HII regions and driving their expansion, our understanding on how this actually occurs remains incomplete. To quantitatively assess the effect of UV radiation feedback on cloud disruption, we conduct a series of theoretical studies on the dynamics of HII regions and its role in controlling the star formation efficiency (SFE) and lifetime of GMCs in a wide range of star-forming environments. We first develop a semi-analytic model for the expansion of spherical dusty HII regions driven by the combination of gas and radiation pressures, finding that GMCs in normal disk galaxies are destroyed by gas-pressure driven expansion with SFE < 10%, while more dense and massive clouds with higher SFE are disrupted primarily by radiation pressure. Next, we turn to radiation hydrodynamic simulations of GMC dispersal to allow for self-consistent star formation as well as inhomogeneous density and velocity structures arising from supersonic turbulence. For this, we develop an efficient parallel algorithm for ray tracing method, which enables us to probe a range of cloud masses and sizes. Our parameter study shows that the net SFE, lifetime (measured in units of free-fall time), and the importance of radiation pressure (relative to photoionization) increase primarily with the initial surface density of the cloud. Unlike in the idealized spherical model, we find that the dominant mass loss mechanism is photoevaporation rather than dynamical ejection and that a significant fraction of radiation escapes through low optical-depth channels. We will discuss the astronomical.

  • PDF

Structural Characteristics on InAs Quantum Dots multi-stacked on GaAs(100) Substrates

  • Roh, Cheong-Hyun;Park, Young-Ju;Kim, Eun-Kyu;Shim, Kwang-Bo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.1
    • /
    • pp.25-28
    • /
    • 2000
  • The InAs self-assembled quantun dots (SAQDS) were grown on a GaAs(100) substrate using a molecular beam epitaxy (MBE) technique. The InAs QDs were multi-stacked to have various layer structures of 1, 3, 6, 10, 15 and 20 layers, where the thickness of the GaAs spacer and InAs QD layer were 20 monolayers (MLs) and 2 MLs, respectively. The nanostructured feature was characterized by photoluminescence (PL) and scanning transmission electron microscopy (STEM). It was found that the highest PL intensity was obtained from the specimen with 6 stacking layers and the energy of the PL peak was split with increasing the number of stacking layers. The STEM investigation exhibited that the quantum dots in the 6 stacking layer structure were well aligned in vertical columns without any deflect generation, whereas the volcano-like deflects were formed vertically along the growth direction over 10 periods of InAs stacking layers.

  • PDF

A Double Helix DNA Structure Based on the Block Circulant Matrix (I) (블록순환 행렬에 의한 이중나선 DNA 구조 (I))

  • Lee, Sung-Kook;Park, Ju-Yong;Lee, Moon-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.203-211
    • /
    • 2016
  • The genetic code is a key to bio-informatics and to a science of biological self-organizing on the whole. Modern science faces the necessity of understanding and systematically explaining mysterious features of ensembles of molecular structures of the genetic code. This paper is devoted to symmetrical analysis for genetic systems. Mathematical theories of noise-immunity coding and discrete signal processing are based on Jacket matrix methods of representation and analysis of information. Both of the RNA and Jacket Matrix property also have the Element(Block) - wise Inverse Matrices. These matrix methods, which are connected closely with relations of symmetry, are borrowed for a matrix analysis of ensembles of molecular elements of the genetic code. This method is presented for its simplicity and the clarity with which it decomposes a Jacket Matrix in terms of the genetic RNA Codon.

Characterization of Wild-Type and Mutated RET Proto-Oncogene Associated with Familial Medullary Thyroid Cancer

  • Masbi, Mohammad Hosein;Mohammadiasl, Javad;Galehdari, Hamid;Ahmadzadeh, Ahmad;Tabatabaiefar, Mohammad Amin;Golchin, Neda;Haghpanah, Vahid;Rahim, Fakher
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.5
    • /
    • pp.2027-2033
    • /
    • 2014
  • Background: We aimed to assess RET proto-oncogene polymorphisms in three different Iranian families with medullary thyroid cancer (MTC), and performed molecular dynamics simulations and free energy stability analysis of these mutations. Materials and Methods: This study consisted of 48 patients and their first-degree relatives with MTC confirmed by pathologic diagnosis and surgery. We performed molecular dynamics simulations and free energy stability analysis of mutations, and docking evaluation of known RET proto-oncogene inhibitors, including ZD-6474 and ponatinib, with wild-type and mutant forms. Results: The first family consisted of 27 people from four generations, in which nine had the C.G2901A (P.C634Y) mutation; the second family consisted of six people, of whom three had the C.G2901T (P.C634F) mutation, and the third family, who included 12 individuals from three generations, three having the C.G2251A (P.G691S) mutation. The automated 3D structure of RET protein was predicted using I-TASSER, and validated by various protein model verification programs that showed more than 96.3% of the residues in favored and allowed regions. The predicted instability indices of the mutated structures were greater than 40, which reveals that mutated RET protein is less thermo-stable compared to the wild-type form (35.4). Conclusions: Simultaneous study of the cancer mutations using both in silico and medical genetic procedures, as well as onco-protein inhibitor binding considering mutation-induced drug resistance, may help in better overcoming chemotherapy resistance and designing innovative drugs.

Cloning and Sequence Analysis of Glyceraldehyde-3-Phosphate Dehydrogenase Gene in Yak

  • Li, Sheng-Wei;Jiang, Ming-Feng;Liu, Yong-Tao;Yang, Tu-Feng;Wang, Yong;Zhong, Jin-Cheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.11
    • /
    • pp.1673-1679
    • /
    • 2008
  • In order to study the biological function of gapdh gene in yak, and prove whether the gapdh gene was a useful intra-reference gene that can be given an important role in molecular biology research of yak, the cDNA sequence encoding glyceraldehyde-3-phosphate dehydrogenase from yak was cloned by the RT-PCR method using gene specific PCR primers. The sequence results indicated that the cloned cDNA fragment (1,008 bp) contained a 1,002 bp open reading frame, encoding 333 amino acids (AAs) with a molecular mass of 35.753 kDa. The deduced amino acids sequence showed a high level of sequence identity to Bos Taurus (99.70%), Xenopus laevis (94.29%), Homo sapiens (97.01%), Mus musculus (97.90%) and Sus scrofa (98.20%). The expression of yak's gapdh gene in heart, spleen, kidney and brain tissues was also detected; the results showed that the gapdh gene was expressed in all these tissues. Further analysis of yak GAPDH amino acid sequence implied that it contained a complete glyceraldehyde-3-phosphate dehydrogenase active site (ASCTTNCL) which ranged from 148 to 155 amino acid residues. It also contained two conserved domains, a NAD binding domain in its N-terminal and a complete catalytic domain of sugar transport in its C-terminal. The phylogenetic analysis showed that yak and Bos taurus were the closest species. The prediction of secondary structures indicated that GAPDH of yak had a similar secondary structure to other isolated GAPDH. The results of this study suggested that the gapdh gene of yak was similar to other species and could be used as the intra-reference to analyze the expression of other genes in yak.