DOI QR코드

DOI QR Code

Complete Chloroplast DNA Sequence from a Korean Endemic Genus, Megaleranthis saniculifolia, and Its Evolutionary Implications

  • Kim, Young-Kyu (School of Life Sciences, Korea University) ;
  • Park, Chong-wook (School of Biological Sciences, Seoul National University) ;
  • Kim, Ki-Joong (School of Life Sciences, Korea University)
  • Received : 2008.12.31
  • Accepted : 2009.01.16
  • Published : 2009.03.31

Abstract

The chloroplast DNA sequences of Megaleranthis saniculifolia, an endemic and monotypic endangered plant species, were completed in this study (GenBank FJ597983). The genome is 159,924 bp in length. It harbors a pair of IR regions consisting of 26,608 bp each. The lengths of the LSC and SSC regions are 88,326 bp and 18,382 bp, respectively. The structural organizations, gene and intron contents, gene orders, AT contents, codon usages, and transcription units of the Megaleranthis chloroplast genome are similar to those of typical land plant cp DNAs. However, the detailed features of Megaleranthis chloroplast genomes are substantially different from that of Ranunculus, which belongs to the same family, the Ranunculaceae. First, the Megaleranthis cp DNA was 4,797 bp longer than that of Ranunculus due to an expanded IR region into the SSC region and duplicated sequence elements in several spacer regions of the Megaleranthis cp genome. Second, the chloroplast genomes of Megaleranthis and Ranunculus evidence 5.6% sequence divergence in the coding regions, 8.9% sequence divergence in the intron regions, and 18.7% sequence divergence in the intergenic spacer regions, respectively. In both the coding and noncoding regions, average nucleotide substitution rates differed markedly, depending on the genome position. Our data strongly implicate the positional effects of the evolutionary modes of chloroplast genes. The genes evidencing higher levels of base substitutions also have higher incidences of indel mutations and low Ka/Ks ratios. A total of 54 simple sequence repeat loci were identified from the Megaleranthis cp genome. The existence of rich cp SSR loci in the Megaleranthis cp genome provides a rare opportunity to study the population genetic structures of this endangered species. Our phylogenetic trees based on the two independent markers, the nuclear ITS and chloroplast MatK sequences, strongly support the inclusion of the Megaleranthis to the Trollius. Therefore, our molecular trees support Ohwi's original treatment of Megaleranthis saniculifolia to Trollius chosenensis Ohwi.

Keywords

Acknowledgement

Supported by : Korea Science and Engineering Foundation, Korea University

References

  1. Cato, S.A., and Richardson, T.E. (1996). Inter- and intra-specific polymorphism at chloroplast SSR loci and the inheritance of plastids Pinus radiata D. Don. Theor. Appl. Genet. 93, 587-592 https://doi.org/10.1007/BF00417952
  2. Cosner, M.E., Jansen, R.K., Palmer, J.D., and Downie, S.R. (1997). The highly rearranged chloroplast genome of Trachelium caeruleum (Campanulaceae): multiple inversions, inverted repeat expansion and contraction, transposition, insertions/deletions, and several repeat families. Curr. Gennet. 31, 419-429 https://doi.org/10.1007/s002940050225
  3. Cosner, M.E., Raubeson, L.A., and Jansen, R.K. (2004). Chloroplast DNA rearrangements in Campanulaceae: phylogenetic utility of highly rearranged genomes. BMC Evol. Biol. 4, 27 https://doi.org/10.1186/1471-2148-4-27
  4. Doyle, J.J., and Doyle, J.A. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19, 11-15
  5. Doyle, J.J., Davis, J.I., Soreng, R.J., Garvin, D., and Anderson, M.J. (1992). Chloroplast DNA inversions and the origin of the grass family (Poaceae). Proc. Natl. Acad. Sci. USA 89, 7722-7726 https://doi.org/10.1073/pnas.89.16.7722
  6. Farris, J.S., Albert, V.A., Kallersjo, M., Lipscomb, D., and Kluge, A.G. (1996). Parsimony jackknifing out performs neighborjoining. Cladistics 12, 94-124
  7. Hachtel, W., Neuss, A., and Stein, J.V. (1991). A chloroplast DNA inversion marks an evolutionary spilt in the genus Oenothera. Evolution 45, 1050-1052 https://doi.org/10.2307/2409709
  8. Hermann, R.G., Oelmuller, R., Bichler, J., Schneiderbauer, A., Steppuhn, J., Wedel, N., Tyagi, A.K., and Westhoff, P. (1991). The thylakoid membrane of higher plants: genes, their expression and interaction. In Plant Molecular Biology 2, R.G. Hermann, and B. Larkins, eds., (New York, USA: Plaenum Press), pp. 411-427
  9. Higgins, D.G., Thompson, J.D., and Gibson, T.J. (1996). Using CLUSTAL for multiple sequence alignments. Methods Enzymol. 266, 383-402 https://doi.org/10.1016/S0076-6879(96)66024-8
  10. Hiratsuka, J., Shimada, H., Whittier, R., Ishibashi, T., Sakamoto, M., Mori, M., Kondo, C., Honji, Y., Shun, C.R., Meng, B.Y., et al. (1989). The complete sequence of the rice (Orueza sativa chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol. Gen. Genet. 217, 185-194 https://doi.org/10.1007/BF02464880
  11. Hoot, S.B. (1991). Phylogeny of the Ranunculaceae based on epidermal microcharacters and macromophology. Syst. Bot. 16, 741-755 https://doi.org/10.2307/2418876
  12. Hoot, S.B., and Palmer, J.D. (1994). Structural rearrangements, including parallel inversions, within the chloroplast genome of Anemone and related genera. J. Mol. Evol. 38, 274-281
  13. Jansen, U. (1966). Die Verwandtschaftverhaltnisse innerhalb der Ranunculaceae aus serologischer Sicht. Ber. Deutsch. Bot. Ges 79, 407-412
  14. Jansen, U. (1968). Serologische Beitrage zur Systematik der Ranunculaceae. Bot. Jahrb. 88, 269-310
  15. Jansen, R.K., and Palmer, J.D. (1987). A chloroplast DNA inversion marks an ancient evolutionary split in the sunflower family (Asteraceae). Proc. Natl. Acad. Sci. USA 84, 5818-5822 https://doi.org/10.1073/pnas.84.16.5818
  16. Jansen, R.K., Cai, Z., Raubeson, L.A., Daniell, H., dePamphilis, C.W., Mack, J.L., Muller, K.F., Bellian, M.G., Haberle, R.C., Hansen, A.K., et al. (2007). Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc. Natl. Acad. Sci. USA 104, 19369-19374 https://doi.org/10.1073/pnas.0709121104
  17. Jensen, U., Hoot, S.B., Johansson, J.T., and Kosuge, K. (1995). Systematics and phylogeny of the Ranunculaceae, a revised family concept on the basis of molecular data. Plant Syst. Evol. 9, 273-280 https://doi.org/10.1007/BF01957176
  18. Johansson, J.T., and Jansen, R.K. (1991). Chloroplast DNA variation among the five species of Ranunculaceae : structure, sequence divergence, and phylogenetic relationships. Plant Syst. Evol. 178, 9-25 https://doi.org/10.1007/BF00937979
  19. Kanno, A., and Hirai, A. (1993). A transcription map of the chloroplast genome from rice (Oryza sativa), Curr. Genet. 23, 166-174 https://doi.org/10.1007/BF00352017
  20. Kim, M., and Lee, S. (1987). Palynotaxonomic relationship of Megaleranthis saniculifolia Ohwi to the relative species. Korean J. Plant Taxon. 17, 13-20 https://doi.org/10.11110/kjpt.1987.17.1.013
  21. Kim, K.J., and Lee, H.L. (2004). Complete chloroplast genome sequences from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. DNA Res. 11, 247-261 https://doi.org/10.1093/dnares/11.4.247
  22. Kim, K.J., Choi, K.S., and Jansen, R.K. (2005). Two chloroplast DNA inversions originated simultaneously during early evolution in the sunflower family. Mol. Biol. Evol. 22, 1783-179 https://doi.org/10.1093/molbev/msi174
  23. Knox, E.B., and Palmer, J.D. (1999). The chloroplast genome arrangement of Lovelia thuliniana (Lobeliaceae): expansion of the inverted repeat in an ancestor of the Campanulales. Plant Syst. Evol. 214, 49-64 https://doi.org/10.1007/BF00985731
  24. Kumar, S., Tamura, K., Jakobsen, I., and Nei, M. (2001). MEGA2 : molecular evolutionary genetics analysis. ver. 2.1. Bioinformatics 17, 1244-1245 https://doi.org/10.1093/bioinformatics/17.12.1244
  25. Kurtz, S., Choudhuri, J.V., Ohlebusch, E., Schleiermacher, C., Stoye, J., and Giegerich, R. (2001). REPuter : the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 29, 4633-4642 https://doi.org/10.1093/nar/29.22.4633
  26. Lee, S. (1989). Palynological evidence for the relationships between Megaleranthis Saniculifolia and Trollius species. Pollen Éí Spores 31, 173-185
  27. Lee, S. (1990). On the taxonomic position of Trollius chosensisOwhi (Ranunculaceae). Korean. J. Pl. Taxon. 20, 1-8 https://doi.org/10.11110/kjpt.1990.20.1.001
  28. Lee, S. (1992). Palynological relationships among Calathodes and its relative genera. Korean. J. Pl. Taxon 22, 23-31
  29. Lee, Y.N. (2007). Flora of Korea, the 2nd ed. (Seoul, Korea: Kyohaksa)
  30. Lee, Y.N., and Yeau, S.H. (1985) Taxonomic characters of Meglaeranthis saniculifolia Ohwi (Ranunculaceae). Korean J. Plant Taxon. 15, 127-131 https://doi.org/10.11110/kjpt.1985.15.3.127
  31. Lee, S., and Blackmore, S. (1992). A palynotaxonomic study of the genus Trollius. Grana 31, 81-100 https://doi.org/10.1080/00173139209430728
  32. Lee, H.L., Jansen, R.K., Chumley, T.W., and Kim, K.J. (2007). Gene relocations within chloroplast genomes of Megaleranthis saniculifolia (Oleaceae) are due to multiple, overlapping inversions. Mol. Biol. Evol. 24, 1161-1180 https://doi.org/10.1093/molbev/msm036
  33. Leppik, E.E. (1964). Floral evolution in Ranunculaceae. Iowa State Coll. Sci. 39, 1-104
  34. Lidholm, J., and Gustafsson, P. (1991). A three-step model for the rearrangement of chloroplast Trnk-psbA region of the gymnosperm Pinus contorta. Nucleic Acids Res. 19, 2881-2887 https://doi.org/10.1093/nar/19.11.2881
  35. Milligan, B.G., Hampton, J.N., and Palmer, J.D. (1989). Dispersed repeats and structural reorganization in subclover chloroplast DNA. Mol. Biol. Evol. 6, 355-368
  36. Ogihara, Y., Terachi, T., and Sasakuma, T. (1988). Intramolecular recombination of chloroplast genome mediated by a short directrepeat sequence in wheat species. Proc. Natl. Acad. Sci. USA 85, 8573-8577 https://doi.org/10.1073/pnas.85.22.8573
  37. Ohwi, J. (1935). Negaleranthis, genus novum Ranunculacearum. Acta Phytotax. Geobot, 4, 130-131
  38. Ohwi, J. (1937). Symbolae ad floram Asiae orientalis 15. Acta Phytotax. Geobot. 6, 145-153
  39. Palmer, J.D. (1990). Contrasting modes and tempos of genome evolution in land plant organelles. Trends Genet. 6, 115-120 https://doi.org/10.1016/0168-9525(90)90125-P
  40. Palmer, J.D. (1991). Plastid chromosomes: structure and evolution. In Cell Culture and Somatic Cell Genetics in Plants, Vol. 7A, The Molecular biology of Plastids. I.K. Vasil, and L. Bogorad, eds. (San Diego, USA: Academic Press), pp. 5-53
  41. Palmer, J.D., and Thompson, W.F. (1981). Rearrangements in the chloroplast genomes of mung bean and pea. Proc. Natl. Acad. Sci. USA 78, 5533-5537 https://doi.org/10.1073/pnas.78.9.5533
  42. Palmer, J.D., Nugent, J.M., and Herbon, L.A. (1987a). Unusual structure of geranium chloroplast DNA: A triple-sized inverted repeat, extensive gene duplications, multiple inversions, and two repeat families. Proc. Natl. Acad. Sci. USA 84, 769-77 https://doi.org/10.1073/pnas.84.3.769
  43. Palmer, J.D., Osorio, B., Aldrich, J., and Thompson, W.F. (1987b). Chloroplast DNA evolution among legumes: Loss of a large inverted repeat occurred prior to other sequence rearrangements. Curr. Genet. 11, 275-286 https://doi.org/10.1007/BF00355401
  44. Park, C.-W., Yeau, S.H., Chang, C.S., Lee, H.W., and Sun, B.Y. (2007). Ranunculaceae. In The Genera of Vascular Plants of Korea. C.-W. Park, ed. (Seoul, Korea: Academy Publ. Co.), pp. 165-205
  45. Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S., and Rafalski, A. (1996). The utility of RFLP, RAPD, AFLP and SSRP (microsatellite) markers for germplasm analysis? Mol. Breed. 2, 225-238 https://doi.org/10.1007/BF00564200
  46. Provan, J., Corbett, G., Waugh, R., McNicol, J.W., Morgante, M., and Powell, W. (1996). DNA fingerprints of rice (Oryza sativa) obtained from hypervariable simple sequence repeats. Proc. R. Soc. London Ser. B 263, 1275-1281 https://doi.org/10.1098/rspb.1996.0187
  47. Raubeson, L.A., and Jansen, R.K. (2005). Chloroplast genomes of plants. In Diversity and Evolution of Plants-genotypic Variation in Higher Plants. R. Henry, ed. (Oxfordshire, United Kingdom: CABI Publishing), pp.45-68
  48. Raubeson, L.A., Peery, R., Chumley, T.W., Dziubek, C., Fourcade, H.M., Boore, J.L., and Jansen, R.K. (2007). Comparative chloroplast genomics analyses including new sequences from the angiosperms Nuphar advena and Ranunculus macranthus. BMC Genomics 8, 174 https://doi.org/10.1186/1471-2164-8-174
  49. Ro, K.E., Keener, C.S., and Mcpheron, B.A. (1997). Molecular phylogenetic study of the Ranunculaceae: utility of the nuclear 26S Ribosomal DNA in inferring intrafamilial relationships. Mol. Phylog. Evol. 8, 117-127
  50. Saitou, N., and Nei, M. (1985). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425
  51. Sambrook, J., Fritsch, E.F., and Maniatis, R. (1989). Molecular Cloning, a laboratory manual, the 2nd ed. (New York: USA, Cold Spring Harbor Lab Press)
  52. Santisuk, T. (1979). A palynological study of the tribe Ranunculeae. Opera Bot. 48, 1-74
  53. Saski, C., Lee, S.B., Daniell, H., Wood, T.C., Tomkins, J., Kim, H.G., and Jansen, R.K. (2005). Complete chloroplast genome sequences of Glycine max and comparative analyses with other legume genomes. Plant Mol. Biol. 59, 309-322 https://doi.org/10.1007/s11103-005-8882-0
  54. Shinozaki, K., Ohem, M., Tanaka, M., Wakasugi, T., Hayashida, N., Matsubayashi, T., Zaita, N., Chunwongse, J., Obokata, J., Shinozaki, K.Y., et al. (1986). The complete nucleotide sequence of tobacco chloroplast genome: its gene organization and expression. EMBO J. 5, 2043-2049
  55. Shinozaki, K., Hayashida, N., and Sugiura, M. (1988). Nicotiana chloroplast genes for components of the photosynthetic apparatus. Photosyn. Res. 18, 7-31 https://doi.org/10.1007/BF00042978
  56. Strauss, S.H., Palmer, J.D., Howe, G.T., and Doerksen, A.H. (1998). Chloroplast genomes of two conifers lack a large inverted repeat and are extensively rearranged. Proc. Natl. Acad. Sci. USA 85, 3898-3902 https://doi.org/10.1073/pnas.85.11.3898
  57. Swofford, D.L. (2002). PAUP: phylogenetic analysis using parsimony and other methods, ver. 4.0. (Sunderland, USA, Sinauer Assoc.)
  58. Tamura, M. (1966). Morphology, ecology, and phylogeny of the Ranunculaceae VI. Sci. Rep. Osaka Univ. 15, 13-3
  59. Tarnura, M. (1990). A new classification of the family Ranunculaceae 1. Acta. Phytotax. Geobot. 41, 93-101
  60. Tamura, M. (1993). Ranunculaceae. In The Families and Genera of Vascular Plants: Flowering Plants-Dicotyledons, Vol. II. K. Kubitski, J. G. Rohwer, and V. Bittrich, eds. (Berlin: Germany, Springer Verlag), pp. 563-583
  61. Tamura, M. (1995). Phylogeny and classification of the Ranunculaceae. Plant Syst. Evol. 9, 201-206
  62. Wolfe, K.H., Gouy, M., Yang, Y.W., Sharp, P., and LI, W.H. (1989). Date of the monocot-dicot divergence estimated from chloroplast DNA sequence data. Proc. Natl. Acad. Sci. USA 86, 6201-6205 https://doi.org/10.1073/pnas.86.16.6201
  63. Wyman, S.K., Jansen, R.K., and Boore, J.L. (2004). Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20, 3252-3255 https://doi.org/10.1093/bioinformatics/bth352
  64. Yuan, Q., and Yang, Q.E. (2006). Tribal relationships of Beesia, Eranthis and seven other genera of Ranunculaceae: evidence from cytological characters. Bot. J. Linn. Soc. 150, 267-289 https://doi.org/10.1111/j.1095-8339.2006.00477.x

Cited by

  1. Phylogenetic placements ofCalathodesandMegaleranthis(Ranunculaceae): Evidence from molecular and morphological data vol.59, pp.6, 2009, https://doi.org/10.1002/tax.596006
  2. Genetic diversity and structure of the endangered species Megaleranthis saniculifolia in Korea as revealed by allozyme and ISSR markers vol.289, pp.1, 2010, https://doi.org/10.1007/s00606-010-0333-y
  3. Complete chloroplast genome sequence of Magnolia kwangsiensis (Magnoliaceae): implication for DNA barcoding and population genetics vol.54, pp.8, 2009, https://doi.org/10.1139/g11-026
  4. CpGAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences vol.13, pp.None, 2009, https://doi.org/10.1186/1471-2164-13-715
  5. Complete Chloroplast Genome Sequences of Important Oilseed Crop Sesamum indicum L vol.7, pp.5, 2009, https://doi.org/10.1371/journal.pone.0035872
  6. Complete Plastid Genome Sequencing of Trochodendraceae Reveals a Significant Expansion of the Inverted Repeat and Suggests a Paleogene Divergence between the Two Extant Species vol.8, pp.4, 2009, https://doi.org/10.1371/journal.pone.0060429
  7. The Complete Chloroplast Genome of Banana ( Musa acuminata , Zingiberales): Insight into Plastid Monocotyledon Evolution vol.8, pp.6, 2009, https://doi.org/10.1371/journal.pone.0067350
  8. Comparative Genomics of Ten Solanaceous Plastomes vol.2014, pp.None, 2009, https://doi.org/10.1155/2014/424873
  9. A precise chloroplast genome of Nelumbo nucifera (Nelumbonaceae) evaluated with Sanger, Illumina MiSeq, and PacBio RS II sequencing platforms: insight into the plastid evolution of basal eudicots vol.14, pp.None, 2009, https://doi.org/10.1186/s12870-014-0289-0
  10. Chloroplast Genome Evolution in Early Diverged Leptosporangiate Ferns vol.37, pp.5, 2009, https://doi.org/10.14348/molcells.2014.2296
  11. A review of the prevalence, utility, and caveats of using chloroplast simple sequence repeats for studies of plant biology vol.2, pp.12, 2014, https://doi.org/10.3732/apps.1400059
  12. Complete plastome sequence of Thalictrum coreanum (Ranunculaceae) and transfer of the rpl32 gene to the nucleus in the ancestor of the subfamily Thalictroideae vol.15, pp.None, 2009, https://doi.org/10.1186/s12870-015-0432-6
  13. Analyses of the Complete Genome and Gene Expression of Chloroplast of Sweet Potato [ Ipomoea batata ] vol.10, pp.4, 2009, https://doi.org/10.1371/journal.pone.0124083
  14. Comparative Bioinformatics Analysis of the Chloroplast Genomes of a Wild Diploid Gossypium and Two Cultivated Allotetraploid Species vol.13, pp.3, 2009, https://doi.org/10.15171/ijb.1231
  15. Comparative Bioinformatics Analysis of the Chloroplast Genomes of a Wild Diploid Gossypium and Two Cultivated Allotetraploid Species vol.13, pp.3, 2009, https://doi.org/10.15171/ijb.1231
  16. Complete chloroplast genome sequences of Eucommia ulmoides: genome structure and evolution vol.12, pp.1, 2009, https://doi.org/10.1007/s11295-016-0970-6
  17. The complete plastome sequence of Pentactina rupicola Nakai (Rosaceae), a genus endemic to Korea vol.1, pp.1, 2016, https://doi.org/10.1080/23802359.2016.1225523
  18. Genome Sequences of Populus tremula Chloroplast and Mitochondrion: Implications for Holistic Poplar Breeding vol.11, pp.1, 2009, https://doi.org/10.1371/journal.pone.0147209
  19. Phylogenomic and structural analyses of 18 complete plastomes across nearly all families of early-diverging eudicots, including an angiosperm-wide analysis of IR gene content evolution vol.96, pp.None, 2009, https://doi.org/10.1016/j.ympev.2015.12.006
  20. Evolutionary dynamics of the plastid inverted repeat: the effects of expansion, contraction, and loss on substitution rates vol.209, pp.4, 2016, https://doi.org/10.1111/nph.13743
  21. Five Complete Chloroplast Genome Sequences from Diospyros : Genome Organization and Comparative Analysis vol.11, pp.7, 2016, https://doi.org/10.1371/journal.pone.0159566
  22. Complete chloroplast genome of Clematis fusca var. coreana (Ranunculaceae) vol.27, pp.6, 2009, https://doi.org/10.3109/19401736.2014.1003841
  23. The complete plastome sequence of Durian, Durio zibethinus L. (Malvaceae) vol.2, pp.2, 2017, https://doi.org/10.1080/23802359.2017.1398615
  24. Complete Chloroplast Genome Sequence of Coptis chinensis Franch. and Its Evolutionary History vol.2017, pp.None, 2009, https://doi.org/10.1155/2017/8201836
  25. Phylogeny and reclassification of Aconitum subgenus Lycoctonum (Ranunculaceae) vol.12, pp.1, 2009, https://doi.org/10.1371/journal.pone.0171038
  26. Complete plastome sequencing of both living species of Circaeasteraceae (Ranunculales) reveals unusual rearrangements and the loss of the ndh gene family vol.18, pp.None, 2009, https://doi.org/10.1186/s12864-017-3956-3
  27. Comparative Chloroplast Genomics of Dipsacales Species: Insights Into Sequence Variation, Adaptive Evolution, and Phylogenetic Relationships vol.9, pp.None, 2009, https://doi.org/10.3389/fpls.2018.00689
  28. Comparative Analysis of Complete Chloroplast Genomes of Anemoclema, Anemone, Pulsatilla , and Hepatica Revealing Structural Variations Among Genera in Tribe Anemoneae (Ranunculaceae) vol.9, pp.None, 2009, https://doi.org/10.3389/fpls.2018.01097
  29. Divergence time estimation of an ancient relict genus Mankyua (Ophioglossaceae) on the young volcanic Jejudo Island in Korea vol.48, pp.1, 2018, https://doi.org/10.11110/kjpt.2018.48.1.1
  30. Characterization of the complete chloroplast genome of the perennial herb Aconitum carmichaelii (Ranunculales: Ranunculaceae) vol.10, pp.4, 2009, https://doi.org/10.1007/s12686-017-0875-1
  31. The complete chloroplast genome sequences of four Viola species (Violaceae) and comparative analyses with its congeneric species vol.14, pp.3, 2009, https://doi.org/10.1371/journal.pone.0214162
  32. Lost and Found: Return of the Inverted Repeat in the Legume Clade Defined by Its Absence vol.11, pp.4, 2019, https://doi.org/10.1093/gbe/evz076
  33. Structural variation of the complete chloroplast genome and plastid phylogenomics of the genus Asteropyrum (Ranunculaceae) vol.9, pp.1, 2009, https://doi.org/10.1038/s41598-019-51601-2
  34. Complete Chloroplast Genome Characterization of Oxalis Corniculata and Its Comparison with Related Species from Family Oxalidaceae vol.9, pp.8, 2009, https://doi.org/10.3390/plants9080928
  35. Phylogeny and evolution of chloroplast tRNAs in Adoxaceae vol.11, pp.3, 2009, https://doi.org/10.1002/ece3.7133