DOI QR코드

DOI QR Code

Morphological characterization and molecular phylogenetic analysis of Dolichospermum hangangense (Nostocales, Cyanobacteria) sp. nov. from Han River, Korea

  • Choi, Hye Jeong (Department of Life Science, College of Natural Sciences, Hanyang University) ;
  • Joo, Jae-Hyoung (Research Institute for Natural Sciences, Hanyang University) ;
  • Kim, Joo-Hwan (Department of Life Science, College of Natural Sciences, Hanyang University) ;
  • Wang, Pengbin (Department of Life Science, College of Natural Sciences, Hanyang University) ;
  • Ki, Jang-Seu (Department of Biotechnology, Sangmyung University) ;
  • Han, Myung-Soo (Department of Life Science, College of Natural Sciences, Hanyang University)
  • Received : 2018.02.21
  • Accepted : 2018.05.02
  • Published : 2018.06.15

Abstract

Dolichospermum is a filamentous and heterocytous cyanobacterium that is one of the commonly occurring phytoplanktons in the Han River of Korea. Morphological observations led to the identification of D. planctonicum-like filaments in seasonal water samples. In the present study, we successfully isolated these filaments using culture methods, and examined its morphology using light and scanning electron microscopy. The morphology of the D. planctonicumlike species differed from that of typical D. planctonicum; it had thin cylindrical-shaped akinetes, which were narrower towards the ends than at the center. This morphology is firstly described in the genus Dolichospermum. In addition, the akinetes in the filament developed solitarily and were distant from the heterocytes. Phylogenetic analysis of the 16S rRNA sequences showed that our Dolichospermum clustered with D. planctonicum and D. circinale, which have coiled trichome. However, phylogenetic analysis of the gene encoding rivulose-1,5-bisphosphate carboxylase (rbcLX) clearly separated our species from other Dolichospermum, forming a unique clade. Additionally, structures of D. planctonicum and D. hangangense strains were different type in Box-B and V3 region. These results demonstrated that the new Dolichospermum species was unique in morphology and molecular traits. Therefore, we propose this to be a new species belonging to genus Dolichospermum with the name Dolichospermum hangangense sp. nov.

Keywords

References

  1. Bornet, E. & Flahault, C. 1888. Revision des Nostocacees heterocystees contenues dans les principaux herbiers de France (quatrieme et dernier fragment). Annales des Sciences Naturelles, Botanique, Septieme, Serie. 7:177-262.
  2. Chang, H. 2005. Spatial and temporal variations of water quality in the Han River and its tributaries, Seoul, Korea, 1993-2002. Water Air Soil Pollut. 161:267-284. https://doi.org/10.1007/s11270-005-4286-7
  3. Fiore, M. F., Nelian, B. A., Copp, J. N., Rodrigues, J. L. M., Tsai, S. M., Lee, H. & Trevors, J. T. 2005. Characterization of nitrogen-fixing cyanobacteria in the Brazilian amazon floodplain. Water Res. 390:5017-5026.
  4. Garrity, G., Boone, D. R. & Castenholz, R. W. 2012. Bergey's manual of systematic bacteriology. Vol. 1. The Archaea and the deeply branching and phototrophic bacteria. Springer-Verlag, New York, 722 pp.
  5. Gugger, M., Lyra, C., Henriksen, P., Coute, A., Humbert, J. F. & Sivonen, K. 2002. Phylogenetic comparison of the cyanobacterial genera Anabaena and Aphanizomenon. Int. J. Syst. Evol. Microbiol. 52:1867-1880.
  6. Gugger, M. F. & Hoffmann, L. 2004. Polyphyly of true branching cyanobacteria (Stigonematales). Int. J. Syst. Evol. Microbiol. 54:349-357. https://doi.org/10.1099/ijs.0.02744-0
  7. Guiry, M. D. & Guiry, G. M. 2013. AlgaeBase. World-wide electronic publication. National University of Ireland, Galway. Available from: http://www.algaebase.org. Accessed Aug 1, 2017.
  8. Han, M. -S., Auh, Y. -Y., Ryu, J. -K., Yoo, K. -I. & Choi, Y. -K. 1995. Ecological studies on Pal'tang River-Reservoir System in Korea 2. Changes in phytoplankton community structure. Korean J. Limnol. 28:335-344.
  9. Han, M. -S., Kim, Y. -O., Yi, D. -S. & Hong, S. -S. 2002. Speciesspecific productivity of Cyptomonas ovata (Cryptophyceae) in the Pal'tang Reservoir, Korea. J. Freshw. Ecol. 17:521-529. https://doi.org/10.1080/02705060.2002.9663930
  10. Han, M. -S., Ryu, J. -K., Yoo, K. -I. & Kong, D. -S. 1993. Ecological studies on Pal'tang River-Reservoir System in Korea. 1. Annual variation of water quality: past and present. Korean J. Limnol. 26:141-149.
  11. Han, M. -S., Yi, D. -S., Ryu, J. -K. & Yoo, K. -I. 1999. Ecological Studies on Pal'tang River-Reservoir System in Korea 3. Photosynthetic parameters and primary productivity of phytoplankton. Korean J. Limnol. 32:8-15.
  12. Hall, T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acid Symp. Ser. 41:95-98.
  13. Ichimura, T. & Itoh, T. 1977. Preservation methods of microalgae: preservation methods of microorganisms. University of Tokyo Press, Tokyo, pp. 355-373 (in Japanese).
  14. Johansen, J. R., Bohunicka, M., Lukesova, A., Hrchkova, K., Vaccarino, M. A. & Chesarino, N. M. 2014. Morphological and molecular characterization within 26 strains of the genus Cylindrospermum (Nostocaceae, Cyanobacteria), with descriptions of three new species. J. Phycol. 50:187-202. https://doi.org/10.1111/jpy.12150
  15. Joo, J. -H., Park, B. S., Lee, E. -S., Kang, Y. -H. & Han, M. -S. 2016a. Inhibition of growth and microcystin toxicity, and characterization of algicidal substances from Lactobacillus graminis against Microcystis aeruginosa. Korean J. Ecol. Environ. 49:176-186. https://doi.org/10.11614/KSL.2016.49.3.176
  16. Joo, J. -H., Park, C. -S., Choi, H. J., Lee, H. W. & Han, M. -S. 2017. A field application feasibility of biologically derived substances (naphthoquinone derivate: NQ 2-0) for the mitigation of harmful cyanobacterial blooms. Ecol. Resil. Infrastruct. 4:130-141.
  17. Joo, J. -H., Park, C. -S., Kuang, Z., Byun, J. -H., Lee, H. W., Choi, H. J. & Han, M. -S. 2016b. Development of immobilized naphthoquinone for effective algicidal activity under various environmental conditions and it's ecological changing monitoring. Korean J. Environ. Biol. 34:281-291. https://doi.org/10.11626/KJEB.2016.34.4.281
  18. Kim, B. H., Lee, W. S., Kim, Y. -O., Lee, H. -O. & Han, M. -S. 2005. Relationship between akinete germination and vegetative population of Anabaena flos-aquae (Nostocales, Cyanobacteria) in Seokchon reservoir (Seoul, Korea). Arch. Hydrobiol. 163:49-64. https://doi.org/10.1127/0003-9136/2005/0163-0049
  19. Komarek, J. & Mares, J. 2012. An update to modern taxonomy (2011) of freshwater planktic heterocytous cyanobacteria. Hydrobiologia 698:327-351. https://doi.org/10.1007/s10750-012-1027-y
  20. Laloui, W., Palinska, K. A., Rippka, R., Partensky, F., de Marsac, N. T., Herdman, M. & Iteman, I. 2002. Genotyping of axenic and non-axenic isolates of the genus Prochlorococcus and the OMF-'Synechococcus' clade by size, sequence analysis or RFLP of the internal transcribed spacer of the ribosomal operon. Microbiology 148:453-465. https://doi.org/10.1099/00221287-148-2-453
  21. Lee, D. -S., Suh, S. -O., Hwang, S. -K., Kwon, T. -K., Kim, T. -H., Shin, W. -C. & Hong, S. -D. 1996. Nucleotide sequence of 16S rRNA gene from Streptomyces melanosporofaciens 7489. J. Microbiol. Biotechnol. 6:364-365.
  22. Li, Z. & Brand, J. 2007. Leptolyngbya nodulosa sp. nov. (Oscillatoriaceae), a subtropical marine cyanobacterium that produces a unique multicellular structure. Phycologia 46:396-401. https://doi.org/10.2216/06-89.1
  23. Li, Z., Han, M. -S., Hwang, S. -O., Byeon, M. -S., Hwang, S. -J. & Kim, B. -H. 2013. Molecular identification of the bloom-forming cyanobacterium Anabaena from north Han River system in summer 2012. Korean J. Ecol. Environ. 46:154-162.
  24. Li, Z., Shin, H. H., Lee, T. & Han, M. -S. 2015. Resting stages of freshwater algae from surface sediments in Paldang Dam Lake, Korea. Nova Hedwigia 101:475-500. https://doi.org/10.1127/nova_hedwigia/2015/0284
  25. Ludwig, W., Strunk, O., Klugbauer, S., Klugbauer, N., Weizenegger, M., Neumaier, J., Bachleitner, M. & Schleifer, K. H. 1998. Bacterial phylogeny based on comparative sequence analysis (review). Electrophoresis 19:554-568. https://doi.org/10.1002/elps.1150190416
  26. Lukesova, A., Johansen, J. R., Martin, M. P. & Casamatta, D. A. 2009. Aulosira bohemensis sp. nov.: further phylogenetic uncertainty at the base of the Nostocales (Cyanobacteria). Phycologia 48:118-129. https://doi.org/10.2216/08-56.1
  27. Mishra, S., Bhargava, P., Adhikary, S. P., Pradeep, A. & Rai, L. C. 2015. Weighted morphology: a new approach towards phylogenetic assessment of Nostocales (Cyanobacteria). Protoplasma 252:145-163. https://doi.org/10.1007/s00709-014-0629-9
  28. Nubel, U., Garcia-Pichel, F. & Muyzer, G. 1997. PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl. Environ. Microbiol. 63:3327-3332.
  29. Nylander, J. A. 2004. MrModeltest ver. 2.3. Computer software and manual. Evolutionary Biology Centre, Uppsala University, Uppsala.
  30. Oliver, R. L. & Ganf, G. G. 2000. Freshwater blooms. In Whitton, B. & Potts, M. (Eds.) The Ecology of Cyanobacteria: Their Diversity in Time and Space. Kluwer Academic, Dordrecht, pp. 149-194.
  31. Pearson, L., Mihali, T., Moffitt, M., Kellmann, R. & Neilan, B. 2010. On the chemistry, toxicology and genetics of the cyanobacterial toxins, microcystin, nodularin, saxitoxin and cylindrospermopsin. Mar. Drugs 8:1650-1680. https://doi.org/10.3390/md8051650
  32. Rajaniemi, P., Hrouzek, P., Kastoyska, K., Willame, R., Rantala, A., Hoffmann, L., Komarek, J. & Sivonen, K. 2005. Phylogenetic and morphological evaluation of the genera Anabaena, Aphanizomenon, Trichormus and Nostoc (Nostocales, Cyanobacteria). Int. J. Syst. Evol. Microbiol. 55:11-26. https://doi.org/10.1099/ijs.0.63276-0
  33. Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. & Stanier, R. Y. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology 111:1-61. https://doi.org/10.1099/00221287-111-1-1
  34. Ronquist, F. & Huelsenbeck, J. P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572-1574. https://doi.org/10.1093/bioinformatics/btg180
  35. Rudi, K., Skulberg, O. M. & Jakobsen, K. S. 1998. Evolution of cyanobacteria by exchange of genetic material among phyletically related strains. J. Bacteriol. 180:3453-3461.
  36. Singh, P. K. 1973. Effect of pesticides on blue-green algae. Arch. Microbiol. 89:317-320.
  37. Singh, P., Fatma, A. & Mishra, A. K. 2015. Molecular phylogeny and evogenomics of heterocytous cyanobacteria using rbcL gene sequence data. Ann. Microbiol. 65:799-807. https://doi.org/10.1007/s13213-014-0920-1
  38. Stackebrandt, E. & Goebel, B. M. 1994. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44:846-849. https://doi.org/10.1099/00207713-44-4-846
  39. Suh, M. -Y., Kim, B. -H., Bae, K. -S. & Han, M. -S. 2005. Annual fluctuation (2000-2003) of water quality and cyanobacterial abundance in the lower part of Han-River. Korean J. Limnol. 38:181-187.
  40. Tanabe, Y., Kasai, F. & Watanabe, M. M. 2007. Multilocus sequence typing (MLST) reveals high genetic diversity and clonal population structure of the toxic cyanobacterium Microcystis aeruginosa. Microbiology 153:3695-3703. https://doi.org/10.1099/mic.0.2007/010645-0
  41. Tuji, A. & Niiyama, Y. 2010. Phylogenetic study by the morphological and molecular analyses of Japanese planktonic Anabaena species. Bull. Natl. Mus. Nat. Sci. Ser. B 36:71-80.
  42. Urbach, E., Robertson, D. L. & Chisholm, S. W. 1992. Multiple evolutionary origins of prochlorophytes within the cyanobacterial radiation. Nature 355:267-270. https://doi.org/10.1038/355267a0
  43. Vaccarino, M. A. & Johansen, J. R. 2012. Brasilonema angustatum sp. nov. (Nostocales), a new filamentous cyanobacterial species from the Hawaiian islands. J. Phycol. 48:1178-1186. https://doi.org/10.1111/j.1529-8817.2012.01203.x
  44. Wacklin, P., Hoffmann, L. & Komarek, J. 2009. Nomenclatural validation of the genetically revised cyanobacterial genus Dolichospermum (Ralfs ex Bornet et Flahault) comb. nova. Fottea 9:59-64. https://doi.org/10.5507/fot.2009.005
  45. Watanabe, M., Niiyama, Y. & Tuji, A. 2004. Studies on planktonic blue-green algae 10. Classification of planktonic Anabaena with coiled trichomes maintained in the national science museum, Tokyo. Bull. Natl. Sci. Mus. Ser. B Bot. 30:135-149.
  46. Wilmotte, A. & Herdman, M. 2001. Phylogenetic relationships among the cyanobacteria based on 16S rRNA sequences. In Garrity, G. M., Boone, D. R. & Castenholz, R. W. (Eds.) Bergey's Manual of Systematic Bacteriology. 2nd ed. Vol. 1. The Archaea and the Deeply Branching and Phototrophic Bacteria. Springer, New York, pp. 487-493.
  47. Zapomelova, E., Hisem, D., Rehakova, K., Hrouzek, P., Jezberova, J., Komarkova, J., Korelusova, J. & Znachor, P. 2008. Experimental comparison of phenotypical plasticity and growth demands of two strains from the Anabaena circinalis/A. crassa complex (Cyanobacteria). J. Plankton Res. 30:1257-1269. https://doi.org/10.1093/plankt/fbn081
  48. Zhang, M., Zhang, Y., Yang, Z., Wei, L., Yang, W., Chen, C. & Kong, F. 2016. Spatial and seasonal shifts in bloomforming cyanobacteria in Lake Chaohu: patterns and driving factors. Phycol. Res. 64:44-55. https://doi.org/10.1111/pre.12112
  49. Zuker, M. 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31:3406-3415. https://doi.org/10.1093/nar/gkg595

Cited by

  1. Violetonostoc minutum gen. et sp. nov. (Nostocales, Cyanobacteria) from a rocky substrate in China vol.35, pp.1, 2018, https://doi.org/10.4490/algae.2020.35.3.4
  2. A machine learning approach for early warning of cyanobacterial bloom outbreaks in a freshwater reservoir vol.288, pp.None, 2018, https://doi.org/10.1016/j.jenvman.2021.112415