• Title/Summary/Keyword: Mobile Satellite

Search Result 423, Processing Time 0.031 seconds

Frequency Sharing between Multi-beam Mobile Satellite Communication System and Mobile Communication System in 2.1 GHz Band (2.1 GHz 대역 다중빔 이동위성통신 시스템과 이동통신 시스템간 주파수 공유)

  • Jeong, Nam-Ho;Kim, Hee-Wook;Oh, Dae-Sub;Ku, Bon-Jun
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.1
    • /
    • pp.102-107
    • /
    • 2012
  • In this paper, we presented interference scenarios and an evaluation methodology for the co-frequency radio interference between a multi-beam mobile satellite communication system and a mobile communication system in 2.1 GHz band. Radio interferences between these systems are calculated using a minimum coupling loss method and an assesment for minimum separation distances was conducted for coexistence of a mobile satellite system and a mobile system in the same geographical area.

Bit error probability and channel capacity in the return link of GLOBALSTAR-A CDMA LEO mobile satellite system (CDMA 방식의 저궤도 이동위성통신 시스템 GLOBALSTAR 역방향 링크의 비트오율 및 채널용량에 관한 연구)

  • 강형진;김동인
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.7
    • /
    • pp.1448-1458
    • /
    • 1997
  • In this paper the reverse link of the GLOBALSTAR-the representative CDMA LEO satellite system and LEO mobile satellite channel are developed by the SPW software simulation tool. And the performance of the system is evaluated. GLOBALSTAR is designed to give cellular-type service to hand-held user terminals through a constellation of 48 LEO satellites in circular orbites with 1414 Km altitude. Since LEO mobile satellite system communicates with mobile unit, it is suffered from severe multipath fading and shadowing. The fast mobility of LEO satellites makes the channel condition time vering. So, the LEO mobile satellite channel is different from land mobile channels. In this unique LEO satellite channel, it is shown that the performance of the GLOBALSTAR reverse link is varied according to the elevational angle, but this variation is overcome by satellite path diversity.

  • PDF

Distributed Space-Time Coded Transmission for Mobile Satellite Communication Using Ancillary Terrestrial Component (ATC를 사용하는 이동위성통신을 위한 분산된 시공간 부호화 전송 방법)

  • Kim, Hui-Uk;Gang, Gun-Seok;An, Do-Seop
    • Journal of Satellite, Information and Communications
    • /
    • v.2 no.1
    • /
    • pp.27-34
    • /
    • 2007
  • A mobile satellite broadcasting service including an ancillary terrestrial component (ATC) takes advantage of the satellite's inherent capability to provide broadcast service over global coverage. We consider the downlink transmission concept using ATC with space=time code (STC) for the mobile satellite communication. We do not regard ATC as simply a repeater but consider it as an antenna for STC. First transmission scenarios for an application of STC are represented. Next, we apply STC in the mobile satellite system including ATC and compare the system performance in the proposed architecture of ATC to that in the conventional structure. The simulation results are compared to the conventional downlink transmission concept for the mobile satellite broadcasting service.

  • PDF

Performance of CDMA system in the Extended Suzuki Model of LEO Satellite (저궤도 위성의 Extended Suzuki 모델에서 CDMA 시스팀의 성능)

  • 박성조
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.10A
    • /
    • pp.1521-1528
    • /
    • 2000
  • In this paper we analyze the performance of a DS/CDMA system in LEO mobile satellite channels. The channel uses the Extended Suzuki model which is the product of a Rician distribution having a LOS component and a lognormal distribution due to shadowing. We assume that the signal transmitted from the satellite to the mobile undergoes the same fading for the whole coverage of signal's beam. The average bit error probabilities of double coverage system is calculated in this paper. The interference resulting from the reference satellite is calculated for mobile located in the middle of the double coverage region whereas the additive interference from next-satellite is included for mobile located in the edge of the double coverage region. The performance of the mobile's receiving signal is dependent on shadowing and the interference of the next-satellite. We can obtain an obtain an improved average bit error probability by using dual diversity over the conventional correlated receiver for similar shadowing conditions in the coverage area of the satellite channel.

  • PDF

The Technique of Satellite Tracking and Beam Forming for Mobile TT&C (이동형 위성 관제를 위한 위성 위치 파악 및 빔 성형 기법)

  • Lee, Yun-Soo;Chinn, Yong-Ohk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.12
    • /
    • pp.1359-1369
    • /
    • 2007
  • This paper describes the technique of satellite direction finding and main beam steering of the adaptive array antenna system which is used for mobile TT&C(Tracking Telemetry&Command) system. To be able to control the satellite on mobile vehicle while moving, the relative directional information of the satellite to the mobile vehicle is necessary to make main beam to the direction of satellite. To do this MUSIC, which is one of the super-resolution algorithm of wave direction finding, is used and then the performance analysis and quantization problem of phase shifter are addressed. This paper is valuable in the respect of showing feasibility of designing the moble TT&C using adative array antenna system.

ITU-R Study on Frequency Sharing for Mobile Satellite Services (ITU-R의 이동위성업무 주파수 공유 연구 현황)

  • B.J. Ku;D.S. Oh
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.1
    • /
    • pp.55-64
    • /
    • 2023
  • Recently, preparations for 6G have led to the increasing interest in integrated or hybrid communication networks considering low-orbit satellite communication networks with terrestrial mobile communication networks. In addition, the demand for frequency allocation for new mobile services from low-orbit small satellites to provide global internet of things (IoT) services is increasing. The operation of such satellites and terrestrial mobile communication networks may inevitably cause interference in adjacent bands and the same band frequency between satellites and terrestrial systems. Focusing on the results of the recent ITU-R WP4C meeting, this study introduces the current status of frequency sharing and interference issues between satellites and terrestrial systems, and frequency allocation issues for new mobile satellite operations. Coexistence and compatibility studies with terrestrial IMT in L band and 2.6 GHz band, operated by Inmassat and India, respectively, and a new frequency allocation study (WRC-23 AI 1.18) are carried out to reflect satellite IoT demand. For the L band, technical requirements have been developed for emission from IMT devices at 1,492 MHz to 1,518 MHz to bands above 1,518 MHz. Related studies in the 2 GHz and 2.6 GHz bands are not discussed due to lack of contributions at the recent meeting. In particular, concerning the WRC-23 agenda 1.18 study on the new frequency allocation method of narrowband mobile satellite work in the Region 1 candidate band 2,010 MHz to 2,025 MHz, Region 2 candidate bands 1,695 MHz to 1,710 MHz, 3,300 MHz to 3,315 MHz, and 3,385 MHz to 3,400 MHz, ITU-R results show no new frequency allocation to narrow mobile satellite services. Given the expected various collaborations between satellites and the terrestrial component are in the future, interference issues between terrestrial IMT and mobile satellite services are similarly expected to continuously increase. Therefore, participation in related studies at ITU-R WP4C and active response to protect terrestrial IMT are necessary to protect domestic radio resources and secure additional frequencies reflecting satellite service use plans.

A Novel Mobile Antenna for Ku-Band Satellite Communications

  • Park, Ung-Hee;Noh, Haeng-Sook;Son, Seong-Ho;Lee, Kyong-Hee;Jeon, Soon-Ik
    • ETRI Journal
    • /
    • v.27 no.3
    • /
    • pp.243-249
    • /
    • 2005
  • A mobile antenna for multimedia communications with Ku-band geostationary satellite KOREASAT-3 and JSAT-2A is presented. The forward link of the satellite communication is 11.7 to 12.75 GHz, and the return link is 14.0 to 14.5 GHz. The mobile antenna is designed to be a stair structure using 24 active phased array elements in order to provide a low profile, and to be at a non-periodic array distance using the genetic algorithm. Also, the designed antenna uses the double beam forming method for stable satellite tracking. The fabricated mobile antenna is examined using various experiments to confirm its capability for practical application. From the measured results, the fabricated mobile antenna system is confirmed to have a good performance.

  • PDF

Adaptive Radio Resource Allocation for a Mobile Packet Service in Multibeam Satellite Systems

  • Lim, Kwang-Jae;Kim, Soo-Young;Lee, Ho-Jin
    • ETRI Journal
    • /
    • v.27 no.1
    • /
    • pp.43-52
    • /
    • 2005
  • In this paper, we introduce an adaptive radio resource allocation for IP-based mobile satellite services. We also present a synchronous multibeam CDMA satellite system using an orthogonal resource sharing mechanism among downlink beams for the adaptive packet transmission. The simulation results, using a Ka-band mobile satellite channel and various packet scheduling schemes, show that the proposed system and resource allocation scheme improves the beam throughput by more than two times over conventional systems. The simulation results also show that, in multibeam satellite systems, a system-level adaptation to a user's channel and interference conditions according to user locations and current packet traffic is more efficient in terms of throughput improvement than a user-level adaptation.

  • PDF

Interference Mitigation Techniques for Satellite Downlink in Satellite and Terrestrial Integrated System (위성/지상 겸용망에서 위성 다운링크 수신 단말 간섭 완화 기법)

  • Kang, Kunseok;Hong, Tae Chul;Kim, Hee Wook;Ku, Bon-Jun
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.4
    • /
    • pp.81-88
    • /
    • 2013
  • The satellite 2.1 GHz frequency bands, 1980-2010 MHz and 2170-2200MHz are allocated for mobile satellite service including satellite IMT, while it does not preclude the use of these bands for mobile services. The concept of an integrated satellite/terrestrial network has been introduced in worldwide because the terrestrial use in these bands adjacent to existing terrestrial IMT bands is attractive to provide mobile broadband services. The integrated satellite/terrestrial infrastructure with a high degree of spectrum utilization efficiency has the ability to provide both multimedia broadband services and public protection and disaster relief solutions. In addition, it is required to consider interference issues between the terrestrial and satellite components in order to reuse the same frequency band to both satellite and terrestrial component. This paper analyzes the interference for satellite downlink in the satellite/terrestrial integrated system and presents the interference mitigation techniques for satellite mobile earth station interfered by terrestrial base stations.

An Efficient AMC Schemes for Mobile Satellite Communication Systems based on LTE (LTE 기반 이동 위성통신 시스템에서의 효율적인 AMC 방식)

  • Yeo, Sung-Moon;Hong, Tae-Chul;Kim, Soo-Young;Ku, Bon-Jun
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.1
    • /
    • pp.43-47
    • /
    • 2010
  • In future mobile networks, hybrid/integrated satellite and terrestrial systems will play an important role. Most of the mobile communication systems are focused on the terrestrial systems, in this case, compatibilities between the satellite and terrestrial systems are very important for efficiency of the systems. Terrestrial systems of all the 4G mobile communication adopted the adaptive modulation and coding (AMC) schemes for efficient usage of resources, and the updating interval of resource allocation in an order of msec. However, because of the long round trip delay of satellite systems, we cannot employ the same AMC scheme specified for the terrestrial system, and thus it cannot effectively counteract to short term fadings. In the paper, we propose the method to apply AMC to mobile satellite systems. In addition, in order to effectively counteract to short term fadings, we present the simulation results of the AMC combined with an interleaver.