• Title/Summary/Keyword: Missile Dynamics

Search Result 69, Processing Time 0.025 seconds

Design of autopilot for a guided missile using model reference adaptive control (기준모델 적응제어에 의한 유도 비행체의 자동조종장치 설계에 관한 연구)

  • Lim, Ho;Park, Jeong-Il;Kim, Won-kyu;Park, Chong-Kug
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.499-502
    • /
    • 1989
  • This paper is concerned with the stability analysis and the design of an auto pilot using direct model reference adaptive control for BTT missile with unknown dynamics when subjected to the longitudinal and lateral gusts. A motion of BTT missile can be separated into the longtudinal and lateral motione. The proposed algorithm is introduced different leakage terms about each motion into adaptation so as to prevent drift of the adaptive gain and alleviate gust effects and cross-coupling. The algorithm is applied to the 6DOF motion of an EMRAAT missile.

  • PDF

The effects of target and missile dynamics on the optimal coriolis acceleration compensation (미사일 및 표적 운동을 고려한 시선지령유도에서의 코리올리 가속도 보상)

  • 류동영;탁민제;엄태윤;송택렬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.596-600
    • /
    • 1992
  • In CLOS guidance, feedback compensation of the Coriolis acceleration is used to reduce miss distance. This paper presents the effects of the bandwidth of target and missile on the optimal Coriolis acceleration compensation. A state space formulation of CLOS guidance is used to implement CLOS guidance in feedback form. And the LQR control method is applied to find the optimal feedback gain. From the analysis of the Riccati equations of the optimal control, the following facts are observed: When the target is agile, the optimal gain is reduced, since the compensation becomes ineffective. The missile bandwidth also affects the Coriolis accleration compensation. Narrower missile requires more compensation for the Coriolis acceleration.

  • PDF

A TUTORIAL ON LINEAR QUADRATIC OPTIMAL GUIDANCE FOR MISSILE APPLICATIONS

  • TAHK, MIN-JEA
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.3
    • /
    • pp.217-234
    • /
    • 2015
  • In this tutorial the theoretical background of LQ optimal guidance is reviewed, starting from calculus of variations. LQ optimal control is then introduced and applied to missile guidance to obtain the basic form of LQ optimal guidance laws. Extension of LQ optimal guidance methodology for handling weighted cost function, dynamic lag associated with the missile dynamics and the autopilot, constrained impact angle, and constrained impact time is also described with a brief discussion on the asymptotic properties of the optimal guidance laws. Furthermore, an introduction to polynomial guidance and generalized impactangle-control guidance, which are closed related with LQ optimal guidance, is provided to demonstrate the current status of missile guidance techniques.

Multi-Input Multi-Output Nonlinear Autopilot Design for Ship-to-Ship Missiles

  • Im Ki-Hong;Chwa Dong-Kyoung;Choi Jin-Young
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.2
    • /
    • pp.255-270
    • /
    • 2006
  • In this paper, a design method of nonlinear autopilot for ship-to-ship missiles is proposed. Ship-to-ship missiles have strongly coupled dynamics through roll, yaw, and pitch channel in comparison with general STT type missiles. Thus it becomes difficult to employ previous control design method directly since we should find three different solutions for each control fin deflection and should verify the stability for more complicated dynamics. In this study, we first propose a control loop structure for roll, yaw, and pitch autopilot which can determine the required angles of all three control fins. For yaw and pitch autopilot design, missile model is reduced to a minimum phase model by applying a singular perturbation like technique to the yaw and pitch dynamics. Based on this model, a multi-input multi-output (MIMO) nonlinear autopilot is designed. And the stability is analyzed considering roll influences on dynamic couplings of yaw and pitch channel as well as the aerodynamic couplings. Some additional issues on the autopilot implementation for these coupled missile dynamics are discussed. Lastly, 6-DOF (degree of freedom) numerical simulation results are presented to verify the proposed method.

Roll-Pitch-Yaw Integrated H Controller Synthesis for High Angle-of-Attack Missiles

  • Choi, Byung-Hun;Kang, Seon-Hyeok;Kim, H. Jin;Won, Dae-Yeon;Kim, Youn-Hwan;Jun, Byung-Eul;Lee, Jin-Ik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.66-75
    • /
    • 2008
  • In this work, we explore the feasibility of roll-pitch-yaw integrated autopilots for high angle-of-attack missiles. An investigation of the aerodynamic characteristics of a surface-to-air missile is presented, which reveals the strong effects of cross coupling between the longitudinal and lateral dynamics. Robust control techniques based on $H_{\infty}$ synthesis are employed to design roll-pitch-yaw integrated autopilots. The performance of the proposed roll-pitch-yaw integrated controller is tested in high-fidelity nonlinear five-degree-of-freedom simulations accounting for kinematic cross-coupling effects between the lateral and longitudinal channels. Against nonlinearity and cross-coupling effects of the missile dynamics, the integrated controller demonstrates superior performance when compared with the controller designed in a decoupled manner.

Design of missile roll controller based on the fuzzy logic (퍼지논리를 이용한 유도탄 롤 제어기 설계)

  • 전병율;남세규;송찬호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1063-1067
    • /
    • 1993
  • Fuzzy logic is applied to a roll autopilot for missiles. Fuzzy rules are made so that the response duplicates that of the conventional control law for some flight condition. A scaling factor of the fuzzy controller is then scheduled by the missile velocity and altitude information to cope with the variation of the roll dynamics from that flight condition. By computer simulations and calculation of the stability margin, it is shown that the fuzzy control is robuster than the conventional one over the flight envelope even though two control laws work similarly for some flight conditions.

  • PDF

NUMERICAL SIMULATION OF THE POWER-ON BASE DRAG OF A MISSILE BODY (CFD를 이용한 유도탄 power-on 기저항력 해석)

  • Choi, J.H.;Lee, E.S.;Lee, K.S.
    • Journal of computational fluids engineering
    • /
    • v.20 no.2
    • /
    • pp.16-22
    • /
    • 2015
  • The pressure is generally lower than that of the freestream at the base of a missile body due to the energy loss by the flow separation around the edge of the base. The base pressure changes in the presence of the thrust jet due to the interaction between the base flow of the missile and the jet flow. In this study, behavior of the missile base pressure by the change of the jet exit pressure and the freestream condition is investigated using the CFD(Computational Fluid Dynamics) method. Effects of the grid type and the freestream condition are tested. The results are compared with the semi-empirical predictions and the flight test data. The CFD results agree well with the flight test data. The semi-empirical predictions overestimate the base pressure when jet thrust is strong for low freestream speed.

NUMERICAL SIMULATION OF UNSTEADY MISSILE STAGING SYSTEM (미사일 단분리 시스템의 비정상 유동장 해석)

  • Yoon Y. H.;Kwon K. B.;Hong S. K.
    • Journal of computational fluids engineering
    • /
    • v.10 no.4 s.31
    • /
    • pp.24-31
    • /
    • 2005
  • A dynamic simulation on the missile staging system is conducted with numerical techniques. Both Euler equations and Navier-Stokes equations are numerically solved respectively. The dynamic simulation of two moving bodies is fully integrated into the computational fluid dynamics solution procedure. The Chimera grid scheme is applied in this simulation for unsteady supersonic flow analysis with dynamic modeling. The objective of the study is to investigate the problem pertaining to possible unstability in missile staging. In addition, the computational comparison between in viscid and viscid flow solvers is also performed in this study.

A real time performance evaluation technique of guidance and control systems (유도조종장치의 실시간 성능평가 기법)

  • 김태연;양태수;김영주;이종하
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.165-170
    • /
    • 1992
  • In this paper, the Hardware-In-The-Loop Simulation(HILS) of missile systems are studied. The HILS is an effective performance evaluation technique that bridges the simulation fidelity gap between analytic all-digital simulations and actual flight tests of missile systems. The HILS may be required to perform system integration tests, performance evaluation at system or subsystem level. Major elements of this HILS facility will include the flight table, simulation computers, I/O computer and peripheral equipments. HILS of missile systems typically involve computer modeling of flight dynamics coupled with a hardware guidance and control(G/C) systems. This paper describes a real time performance evaluation technique of a G/C system, Development of a HILS for a Autopilot of SAM G/C will be used as an example.

  • PDF

Time-Delay Control for Integrated Missile Guidance and Control

  • Park, Bong-Gyun;Kim, Tae-Hun;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.3
    • /
    • pp.260-265
    • /
    • 2011
  • In this paper, integrated missile guidance and control systems using time-delay control (TDC) are developed. The next generation missile requires that an interceptor hits the target, maneuvering with small miss-distances, and has lower weight to reduce costs. This is possible if the synergism existing between the guidance and control subsystems is exploited by the integrated controller. The TDC law is a robust control technique for nonlinear systems, and it has a very simple structure. The feature of TDC is to directly estimate the unknown dynamics and the unexpected disturbance using one-step time-delay. To investigate the performance of the integrated controller, numerical simulations are performed as the maneuver of the target. The results show that the integrated guidance and control system has a good performance.