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Multi-Input Multi-Output Nonlinear Autopilot Design
for Ship-to-Ship Missiles

Ki Hong Im, Dongkyoung Chwa, and Jin Young Choi*

Abstract: In this paper, a design method of nonlinear autopilot for ship-to-ship missiles is
proposed. Ship-to-ship missiles have strongly coupled dynamics through roll, yaw, and pitch
channel in comparison with general STT type missiles. Thus it becomes difficult to employ
previous control design method directly since we should find three different solutions for each
control fin deflection and should verify the stability for more complicated dynamics. In this
study, we first propose a control loop structure for roll, yaw, and pitch autopilot which can
determine the required angles of all three control fins. For yaw and pitch autopilot design,
missile model is reduced to a minimum phase model by applying a singular perturbation like
technique to the yaw and pitch dynamics. Based on this model, a multi-input multi-output
(MIMO) nonlinear autopilot is designed. And the stability is analyzed considering roll
influences on dynamic couplings of yaw and pitch channel as well as the aerodynamic
couplings. Some additional issues on the autopilot implementation for these coupled missile
dynamics are discussed. Lastly, 6-DOF (degree of freedom) numerical simulation results are
presented to verify the proposed method.
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couplings, multi-input multi-output systems.

1. INTRODUCTION

Recently, there have been a lot of researches in the
area of nonlinear autopilot design, which directly
considered the nonlinearities in missile dynamics [1-
9]. In particular, when the accelerations of the missile
system are set to be controlled outputs, the input-
output characteristics of the tail-controlled missile
dynamics become non-minimum phase. Thus, well-
known nonlinear control design methods such as the
feedback linearization technique cannot be directly
applied to the acceleration control of the tail-
controlled missiles. To solve these problems, a method
of partially linearizing control and singular
perturbation like technique was proposed by
approximating the non-minimum phase system into a
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minimum phase system [10-12].

In general, the nonlinear autopilot designs [10-12]
were proposed for skid-to-turn (STT) missiles which
have weak couplings between yaw and pitch
dynamics while assuming the stabilization of the roll
dynamics. However, the ship-to-ship missile
considered in this paper has complicated couplings
among roll, yaw, and pitch dynamics through wind
angles (roll angle, angle-of-attack, and side slip angle)
and three control fin deflections. Furthermore, the
look-up tables for this ship-to-ship missile dynamics
are given in terms of the total angle-of-attack and the
bank angle instead of the angle-of-attack and the side-
slip angle. Since these methods can no longer be
directly employed, a control method needs to be
developed for ship-to-ship missile with above aspects
being considered.

This paper proposes an autopilot design consisting
of the roll stabilizing controller and the yaw-pitch
autopilot to achieve the satisfactory acceleration
tracking performance. Firstly, overall control loop
structure is proposed for the three channels to
determine required control fin deflections easily.
Since there are dominant aerodynamic coefficients for
control inputs in each channel, the overall control loop
for the ship-to-ship missile is divided into two parts; a
roll dynamics stabilizer and a yaw-pitch autopilot.
Secondly, a singular perturbation like technique is
employed to the missile model so that it can be
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approximated to a minimum phase model. This
minimum phase characteristics make it possible to
design a feedback linearizing controller [11] and the
yaw-pitch autopilot is designed by feedback
linearization technique [13,14] in the MIMO structure.
Through these steps, the proposed method achieves a
decoupled acceleration tracking performance for both
yaw and pitch channels but this makes the stability
verification more complicated and difficult. Finally
the overall stability is analyzed considering roll
influences on dynamic couplings of yaw and pitch
channel as well as the aerodynamic couplings. In
addition, the paper discusses the issues of the
implementation of the autopilots for coupled missile
dynamics and, finally, presents the stability analysis of
the overall missile control system.

The remainder of this paper is organized as follows.
Firstly, an approximate minimum phase missile model
is derived from the ship-to-ship missile dynamics. Then,
the control loop is designed based on the minimum
phase model and the stability is analyzed. Finally, the
implementation issues are discussed, and the 6-DOF
(degree of freedom) simulation results to verify the
performance of the proposed autopilot are presented.

2. APPROXIMATE MINIMUM PHASE
MODEL FOR SHIP-TO-SHIP MISSILES

In this section, ship-to-ship missile dynamics are
presented together with their characteristics, and they
are approximated to a minimum phase missile model
by employing a partial feedback linearizing control
input and singular perturbation like technique.

2.1. Ship-to-ship missile dynamics
The nonlinear missile dynamic equations with
acceleration outputs are given by

U=rV — qW+l—@Cx()

(1a)
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where H:=02505VD , B=mX,, [( - mX2) .
():(MM9aT5¢A95E’§O>5R)9 and Clp’ Cmq’ Cnr

are dynamic derivatives. General assumptions were
made to derive the missile model in (1), such as
constant inertia and mass, yaw-pitch symmetry, and
constant velocity. We introduce the following
functions to simplify the design procedure.

CoMyp,ar,¢4) =Co(Myr,ar,84)

D 2a
+ﬁCnO(MM5aT9¢A)a (2a)
S 'e
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VAN 4
Substituting (2a) and (2b) into (Ib) and (lc),
respectively, and using A, =D/(Iy —1Ig), yaw and
pitch dynamic equations become
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H
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where (o) =(M,;,ar,0,4), () =(e,05,00,0p).
However, since the coefficient functions,

Co(Mwm,ar,pa,0(,60,0r), () =x,y,z,0rl , have
a form of (3) in our missile model, coefficient
functions given in terms of ar and ¢4 are not

suitable to be used with the control design method
developed in terms of o and g . Therefore, we

need to reformulate these aerodynamic coefficients
into those parameterized by « and S such as

Cohrs(Mm,a, f,0). These issues on implementation
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problems will be discussed later. From here on, the
coefficient functions will be denoted by C()s for

simplicity.

2.2. Approximate minimum phase model for ship-to-
ship missile
Yaw and pitch control inputs are chosen as

u OS(h, + DB)
- 2\ TR
r+ pa+ Umhv Cy (4a)
_OSDB . BH
Umh,
Uz OS(hy + DB)
2z _ R =l S ind Vg,
U Gy (@b)
QOSDB BH
+ Cp +——Cmgyq,
Umhv m mqq

where u, and u. are new control inputs for yaw and
pitch dynamics, respectively, which will be
determined later. Substituting (4a) and (4b) into (3a)
and (3b), respectively, we obtain
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A direct application of feedback linearization
technique to (5) can make the internal dynamics of
this system unstable, since (5) is of non-minimum
phase. This is a general characteristic of STT type
missiles. Thus, we need to approximate the dynamics
(5) to a minimum phase model.

The coefficients of » and ¢, K, and K in (5), are
physically very large values. Accordingly, » and ¢

dynamics converge to their steady state values much
faster than those of @ and f. Here, we can assume

that # and ¢ are zero and accordingly, r and ¢

can be reduced to their steady state value very quickly.
That is, » dynamics can be replaced by its steady state
values

B -1
o] P

Iv(hy +DB) (6)
Um(X cghy + D) (uy j}
—————— —— - pa |r.
Iv(hy +DB) | U

Thus, (5a) and (5b) can be reduced as

= u
f=—
U
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—_ il_z
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where the over bars are used to distinguish the
variables of reduced system from those of original
dynamics. The dynamics in (7) are minimum phase
since the internal dynamics are stable. The error
dynamics between the original dynamics and the
reduced minimum phase dynamics will be considered
in the following section through the stability analysis.

3. CONTROL LOOP DESIGN AND
STABILITY ANALYSIS

In this section, we design control loops for ship-to-
ship missiles and analyze the stabilities. First, to
simplify the structure of controller for roll, yaw, and
pitch channels, we design the missile velocity control
loop. If we design the thrust force in (1a) as

T=—m{rV—qW——Q£Cx+ku(U—Ud)}, )

m
where U, is a reference velocity input and &, is a
positive design parameter, then the velocity dynamics

in (1a) with thrust in (8) become the stable dynamics
as follows.
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U=-k,U+kuUqg 9)

Remark 1: The velocity U can be almost fixed as
the constant U, by the velocity controller (8) and, thus,
Mach number could be assumed to be fixed in the
sense that U = Mys.

The following should be considered further in the
design of other control loops. The missile model in
this paper has relatively strong couplings not only in
the aerodynamic coefficients through control fin
deflections, but also in yaw and pitch dynamics
through state variables. However, the couplings
between roll dynamics and yaw-pitch dynamics can
be weakened if p remains sufficiently small. The
design of the roll stabilizer is possible only when the
roll dynamics is independent of other dynamics.
However, aerodynamic functions have additional
couplings through control fin deflections since they
include the control fin deflections of other channels
and given as C()(---,0£,00,0r), ()=x,y,z,0r [.
Accordingly, it becomes difficult to solve each of the
control fin deflections directly. To solve these
problems, we propose the overall control loop
structure as shown in Fig. 1. This figure represents the
control structure with two main control blocks,
interconnected by feedback loop. One of the blocks is
the controller of the roll dynamics determining control

fin command, &%, and the other is the controller of
the yaw-pitch dynamics determining Sf and J§ .

The roll aerodynamic coefficient function is given by

C =Co(M,a, )+ Cp5,. (. 0g) (10)
+C150 (',50)"‘ C]é‘R (.’SR)’

where Cisp and Cisp + Cisp are controllable parts,

and Cisr 1is relatively larger than Cisg +Cisp .

Therefore, we can assume that Cj5; is a dominant
term in roll dynamics control, whereas Cysp and

Cysp are dominant terms for yaw-pitch dynamics. In

Fig. 1, the aerodynamic coupling through control
inputs are considered by the feedback structure of the
proposed controller such that the dominant
aerodynamic coefficients can be designed well enough
to eliminate the effects from the other coefficients.
Since yaw and pitch dynamics have strong couplings
through control fin deflections Jg,00 and wind
angles, we will proceed with the autopilot design for
yaw-pitch channel in MIMO form. The characteristics
of the yaw-pitch aerodynamic coefficients will be
explained in more detail in the next subsection.

First, in order to make the roll dynamics stable, we
make Cisp equal to the control input

up = Cisp (11)

roll dynamics

M,, controller S
Ar
P
. pitch, yaw dynamics :
e,
controller
Fig. 1. Structure of overall control loop.
by designing this input as
-1
SD HU 12
Up = Q_ {Vp -———Cpp (12)
Im Iy

—Ci0 —Cise —Ciso

where v, is a compensator variable, and fin commands
of and S5 can be determined from yaw-pitch

autopilot in Fig. 1. If we design the compensator as
Vp = _kpp _k¢¢,

where ¢= p is a roll angular rate and kp.ky are
positive design parameters, the roll dynamics become

b =—ky—kyt. (13)
which verifies that ¢ and p remain bounded and

converge to zero.
For designing the control loops, the following
assumptions are made.

Assumption 1: The variations of Cjp, Cmg, and
Cynr are negligible (C‘zp = C‘mq =Cpn =0).
Assumption 2: The controlled roll dynamics can

‘work independently of yaw-pitch dynamics.

Remark 2: In general, dynamic derivatives in
Assumption 1 can be included in nonlinear missile
modeling in order to bring the missile model closer to
the actual missile system. However, we can assume
that those parameters remain constant since these
parameters are slowing varying enough to be
considered as fixed values.

Remark 3: Assumption 2 is similar to or weaker
than assumptions that are usually made such that roll
angle is zero or the roll rate is zero, i.e., ¢=0, p=0

[15]. The roll dynamics has inherently weak couplings
with yaw-pitch dynamics, and also those small
coupling terms are eliminated by the designed roll
control loop.

Before discussing the yaw-pitch control design and its
stability analysis, we characterize the properties of
yaw-pitch aerodynamic coefficients. For this, the
following assumption is made.

Assumption 3: Cy(a,f) and Cp(a,f) in (2)
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satisfy the conditions as follows:

i) Cq and Cp are smooth functions with respect to
a and f.

ii) C; and Cp are strictly increasing in £ and
o , respectively.

iii) The partial derivatives satisfy

(6Ca| _|oCa| [aCs| _|aCs|
loa| |ap| |oB]| |éal

(14)

iv) The inverse of the partial derivatives,

—1 -1
Ca and QC_bj , are bounded.
op oa

Remark 4: The first and second conditions in
Assumption 3 characterize the properties of the
general shape of aerodynamic coefficient functions.
The third condition states that, in our missile system,
the coefficient function C, has dominant variation

in # whereas Cp does in a even though those

coefficients are strongly coupled and can be varied
with o and g simultaneously. If the third

condition is not satisfied, the dominant aerodynamics
could changes conversely, which is not realistic for
conventional STT missiles in that the autopilot can not
be constructed properly. The fourth condition follows
from the second condition and will be considered in
the stability analysis.

The approximate minimum phase missile model
derived in Section 2 is expressed here again for
convenience.

=3
] OSPBX -
g I (h,+DB) “
Um(X ghy + D) (i,  _ (15)
I DBy (U P
1-_ 90 &, Hh uc,, v
Y (Xgh,+Dym (X ghy+D)m "
. @
5=t
U
_ L OSD(BXy-))
7=k, { 1,/(h, +DB) C
Um(Xcghv +D)( u, — (150)
T3y + DB) (_T” b )
_ oD Hh, _

uc, 7.
F  Xgh+Dm ° Xghy+Dym "

Here, we define the Jacobian matrices of the
coefficient functions as

0Ca  8Cq 8Ca  8Cq
B o - B o
Ay = , Ay = — — |.(16
w= o0, s w K _QC_b( )
B ba o oa

Nonlinear autopilot design for yaw-pitch dynamics
can be summarized as follows.

Proposition 1 (Autopilot Design for Ship-to-Ship
Missile): If we design control inputs for (15a) and
(15b) as

= (Q_Sm_DB)J {@_po—t

g Umh, U (17a)
L 9508 C, +£1+ﬁcn,j7 ,
Umbh, m
-1 .
z - [M_D_B)] {_ o7
Umh, U (17b)
, OSDEB C,+ 1+ﬁcm jcj ,
Umbh, m "

where the control inputs are chosen as

(Ey} 9D _I.Z—I[Vy) (18)
iu: ) \ (Xeghy + DYUm vz

and the compensator is designed as

{v*y =—6, +6,(4,. ~ 4,)

N _ _ (19)
vV, = _Hlvz +€2(Azc - Az) )

then the acceleration outputs of the missile system in
(15) follows that of the linear reference model
Ay(zy + O1dy(z) + O24y(z) = 024yc(zc), Where 6
and &, are positive design parameters.

Proof: Using Assumption 1 and differentiating the
outputs of (15a) and (15b), 4, and A, with respect

to time, we have
- -~ Hi .
4, = OSD . B, uc,,r
(Xcgh, +D)m (Xcoh, +D)m

_ OSD {a@,_ @Ea_}

4
(Xogh, + DYUm | 0@ °~ 0B *
+—LUCW?
(Xcghv +D)m
;Z - OSD éb B Hh, -

uc, . .q
(Xghy + D)m (Xoghy +Dym ™
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_____9sD 0G, 9G,
(Xoh,+DWUm | 0a * o8 7

H .
AR
(Xeghy + D)m

Also, since # and (7 are zeros in this model, above
equations yield

[Ey}[L)zﬂv(@}( ") o
A (Xcghv + D)Um Uz Vz

Consequently, we have

A, ==07, +06,(4,, — 4,)

" E (21a)
=—04, +6,(4,. - 4,),

A =0, +0,(4,, - 4,) (21b)
=04, +60,(A4,, - 4,).

O

Here, we can find that the coupled yaw and pitch
channels are now decoupled as in (21) and behave as
second-order reference models when there is no error
in the approximate minimum phase model.

Since control input and compensators in (18) and
(19) should be replaced by actual values as

-1
Uy | OSD 1 Yy
( uz] “[(Xcghv +D)Um] A [ v, ] @2)

{Vy = —¢91vy + 62 (Ayc — Ay) (23)
""z = _elvz +'92(Azc - Az)ﬁ

we need to describe the error dynamics between (5)
and (15) in order to analyze the stability and
performance for MIMO autopilot for yaw-pitch
channels.

Proposition 2 (Error Dynamics): The error
dynamics between (5) and (15) is given as
év = —Glev - 92@,7 - 9214160
e, =€
e (24)
éo = Azeo + h
€y = Aleo + 677 ,
where
e v, — V.
€z V; =V,

e, :[%J:&_.[ Ca=Ca j (25b)
eyp ) (Kegh, + DYm \~Cy +C,

e W~ e A, -4
@=|," :[0 ZOJ’QA: Y= 2 e
€50 90 40 €4z A, -4,

and
_hv(HUCnr _Kr]) 0
m(Xcghv +D) )
A = ,(27a
1 . h,(HUC,,,, + K1)
] m(X gh, + D)
'K, 0
Ay = A (27b)
h= hy
hZ
K {—QSD(BXCg -1C,
(28)

I ~Um(X gh, + D, JU - par)}
I(h, +DB)| k! {—QSD(BXcg -G,

_Um(Xcghv + D)(_uz/U - pﬂ)}

o))
= , (29)
90 q :

whereas

;' {-0SD(BX ,, ~1)C,
i ~Um(X ogh, + D)u, JU - p@)}
I(h,+DB)| ! {—QSD(BXcg -G,

~Um(X s, + D)(—u, /U - pjB)}

o))
_ =l . (1)
q q

Proof: Together with (22) and (23), the coupled
yaw-pitch dynamics in (5) give the closed loop system
as follows.

-1
¢\ (__osp PERL
(ﬁj_[(Xcghv'f'D)m] Auv (VZ], (32a)

(30)

H

{‘?}/ = —ley +92 (Ayc — Ay) (32b)
V: = —(91\)2 +92 (Azc - AZ )’
ISD(BX,,, —1 Um(X D
oy OB Uy D
1,,(h, + DB) Iy (h +DB) U
o OSD(BX <D | UnXgh +D)
IR om ¢ Tomaon U PP

(32¢)
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H
-

-1
4 (@08 1y OsDB
U ) o e

(h, +DB) { OSDB
AT { o, J PP

(324d)
Introducing the notations in (29), (32¢) and (32d), this
system can be reformulated as

’;0 =K }"0 "r}.l
o (33a)
q qu() +hza

B O
Ay—[ K, m(X71V+D)JrO
0SD C o+ HUR,C,

+ a o
m(Xcghv +D) m(Xcghv +D)

_ Ih,
4 [K" m(Xh, +D)jq0

oD . HUthm
m(X, h,+D) " hV+D)

(33b)

Also, the reduced system in (15) can be expressed as
follows: Together with

A

the reduced system in (15) and (19) become

_] _
oSD -1 | Yy
]‘[mghwmmj Ao U 5%

{ L =—6, +0,(4,, — 4,)

(35b)
=—0y, +0y(4,, - 4,),

=0
io (35¢)
qo = 09
—_ __OSD = HUWCw

Y m(Xeghy + D) m(X cghv + D) 350)
~___ OO =  HUWCwy _

Taking the time derivative of e, in (25), we have
. é}]a

én =| .
! [e b j

< . N (36)
= L{Auv (ﬂj - Zuv [ﬂ]} =€y
(Xeghy + D)m a Na

and the output error e,4 in (24) can be obtained as

Cb+(1+ C )q} eq4 =

Ih HURCyr _
—-K n+ (r—r)
m(Xh, + D) m(Xeghy + D)
+—QS~Q—(Ca —-CJ)
m(Xeghy + D)
Ih HURCng D (37)
Xty +D) * m(Xeghy + D)
OSD
= (-G
m(Xeghs o))

= Ao +ep,

The third row of (24) is obtained from (33a), and the
first row of (24) is obtained from (32b), (35b), and
(37). 0
The following theorem shows the stability and
performance analysis for the coupled yaw and pitch
error dynamics and use Propositions 1 and 2 when
considering the error dynamics in (24) generated by
singular perturbation like technique.

Theorem 1 (Stability Analysis of Error Dynamics):
The error dynamics in (24) is stable in the sense that
eyz=(Ayc—Ay Aze—A)T s
uniformly ultimately bounded.

Proof : See Appendix A.

Remark 5: Note that the tracking error in (A6b) is
bounded and depends on the combinations of
H!,i=1,2,3 , which in turn depends on initial

the tracking error

condition and ”A2‘ 1” Since HAZ“ 1” is a sufficiently

small value, we can expect that ep(¢) will remain in

a small neighborhood of zero after sufficient time.
Accordingly, the ultimate bound of the tracking error
in Theorem 1 can be said to also be dependent on

45"

l, and can be smaller when ||A2‘ 1” becomes

small. Thus, when ”AE 1” decreases to zero, it is

possible to recover the asymptotic stability.
4, IMPLEMENTATION ISSUES

In the case where the control loops have a form as
discussed in Section 3 and the missiles have strong
couplings as in the case of the ship-to-ship missiles
considered herein, some additional issues considering
the implementation of this autopilot needs to be
discussed as follows. Since the coefficient functions,
Coy(Mu,--), ()=x,y,z,or!, have a form of (3),
the coefficient functions in @7 and ¢4 in Section 3
shall not be suitable to apply the control design
method for coefficient functions in ¢ and S and
will have to overcome the following obstacle.

Fig. 2 shows the states in the Y —Z plane of body

axis when acceleration commands are given such that
the velocity vector passes through the origin. It should
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z

(a) Trajectory of the missile velocity.

Total Angle of Attack, Bank

l T T T T T
| ! 1 | |

alphaT [deg]

Bank [deg]

time [sec)
(b) Variations of a7 and ¢4

Fig. 2. History of states with missile maneuver.

be noted that the instant jump phenomenon of bank
angle ¢4 occurs with these acceleration commands.
This can be clearly verified through the following
equation, where ¢4 becomes unbounded as « and
£ approach to zero.

« a+ B J)
Ja?+ 82 ot +p?

= cos” (ar ) {cos(¢,)a +sin(g) B},
'y zcos2(¢A){“ﬂ‘ﬂ}= LR

oz2+,82

ar = cos? (ar)

0(2

- L i)+ cos(g) )

a2+ﬂ2

Accordingly, the parametric model of ar and ¢4

is not appropriate to be applied to the nonlinear
control design schemes such as feedback linearization
because these methods require the differentiation of
the aerodynamic coefficients given as follows:

ocC

oc .
=—ar+—=9¢4.

d
~Zc. ,
dt olar.94) dar Od4

Considering the above, coefficient functions in «

and f is organized by reformulating the existing

coefficient functions of ar and ¢4, and the
relations between these variables are given by

tanar =4/tan2 o +tan2 §

tan (38)
tanf

tangy =

That is, by using (38) and taking coordinate
transformations for C()s.) (MM ,ar,04,0()) and

Co(Muy,ar,da), ()=x0,y0,20,l0,a,0r b , where
()=x,y,z,orl, (¢)=FE,O,or R, we can have the

reformulated coefficient functions

o, (M, 5.5,)

3 [MM,tan {ytan’ @ + tan® B} ,m’5(°) ,

=C

& My, B)

o .2,
tan S

where () =xg,¥9,20,0,a, or b.

Fig. 3 describes this relation. Note that the
reformulated coefficient functions given by (38) have
the same values as the original ones.

Another issue that must be dealt with is the
calculation of the actual control fin deflections. Since
the ship-to-ship missile uses non-affine, coupled
aerodynamic  coefficients through control fin
deflections, it is not easy to determine the control fin

B

.

Fig. 3. Reformulation of aerodynamic coefficients
through coordinate transformation.

adr

.

v,,V, u,,u, c,.C

| |

Compensator Control Input Aerodynamic
Dynamics |:> (Matrix Inversion) |:> Force 'ﬂ
Numerical

Tracking errors Method
(Solution)

0:.95

Fig. 4. Calculation of control fin deflections.
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deflections analytically. Thus, after calculating the
desired value of aerodynamic coefficient as given in
(17), control fin deflections need to be calculated by
employing numerical methods. The overall procedure
for obtaining control fin deflections is illustrated in
Fig. 4.

5. NUMERICAL SIMULATIONS

In this section, the overall control loops designed in
Section 3 are applied to 6-DOF ship-to-ship missile
model for simulations. Although we assumed constant
inertia and mass, yaw-pitch symmetry, and constant
velocity in designing the autopilot, we considered
them as time-varying variables in the simulations.
Also, all of the designed control loops such as
velocity control loop, roll stabilization loop, and yaw-
pitch autopilot loop are included.

Design  parameters are set as follows:
Ug=238m/s, ku=100 for the velocity control

loop; kp =5, kg =10 for the roll stabilization loop;

and 6 =2x0.707, 6> =1 for yaw-pitch autopilot
loop. Actuator model for control fin operation is set to
be a first-order low pass filter with the form

75(.) =-5() +5(°_’), ()=E,O,R for the time constant

r=10ms .

Figs. 5 and 6 present the simulation results when
the acceleration commands are given as square wave
functions with maximum values of +2g and +3g,

respectively. As can be seen from these figures, all of
the states and control inputs, with the exception of the
thrust force, appear to be unsaturated and the overall
control loop operates properly. The tracking results in
Figs. 5(a) and 6(a) show the decoupled response
between yaw and pitch accelerations. Since the strong
coupling between yaw and pitch dynamics are
effectively compensated by the feedback linearization
in MIMO structure. Figs. 5(b) and 6(b) show the
velocities using the thrust force in Figs. 5(g) and 6(g),
respectively. We can see that thrust force is relatively
independent of other dynamics and is insensitive to
the saturation effect. Figs. 5(c), 5(d), 6(c), and 6(d)
show the result of roll angle and roll rate control. In
both cases, roll dynamics is seen to be well stabilized
and the roll angle to remain sufficiently small even
when the perturbation range becomes wider with
larger acceleration commands.

Lastly, we can observe that the couplings between
roll control fin deflections and yaw-pitch control fin
deflections are compensated properly by applying the
proposed overall control loop structure. Even though
the bank angle ¢4 changes discontinuously as

shown in Figs. 5(f) and 6(f), the coefficient
reformulation presented in Section 4 does not suffer
from these problems and the expected tracking

performance is maintained. It should be noted that the
responses in the case of +2g and 3g are similar,

and the expected performance could be obtained for
the 13g acceleration commands unlike the

conventional control methods (e.g. gain scheduling).
Based on these numerical simulation results, we can
conclude that the proposed method is very effective,
and thus, suitable to be applied to strongly coupled
ship-to-ship missiles.

6. CONSLUSIONS

This paper presented a design method for the
MIMO nonlinear autopilot, and also discussed the
stability analysis for the ship-to-ship missiles with
strong couplings between roll, yaw, and pitch axial
dynamics. First, we proposed a control loop structure
for roll, yaw, and pitch autopilot which can determine
the required angles of all three control fins. For yaw
and pitch autopilot design, missile model is reduced to
a minimum phase model by applying a singular
perturbation like technique and a MIMO nonlinear
autopilot is designed. By considering the couplings
between the roll, yaw, and pitch channel, a multi-input
multi-output controller was proposed to realize a
decoupled acceleration tracking performance. And the
stability is analyzed considering roll influences on
dynamic couplings of yaw and pitch channel as well
as the aerodynamic couplings. Since we have
designed the autopilot for an ideal missile model and
did not consider any issues on its implementation and
robustness, the performance and stability could be
degraded by some kind of aerodynamic uncertainties
or in a digital environment. Future works on this
MIMO nonlinear autopilot design should focus on the
practical design method considering the uncertainties
and digital implementation.

NOMENCLATURE
Ay(Az): Yaw (Pitch) achieved acceleration
Ayc(Aze):  Yaw (Pitch) commanded acceleration

Fy,Fy,F:: Xs5Y=Z-components of the vector of
aerodynamic forces

gx.8y.8z: XsYsZ— components of the vector
containing gravitational forces

IeR¥3: Moment of inertia of the airframe
represented in the body axis

Iy, 1,0 X5Y5Z-components of the moment of

inertia of the missile
Ixy,dyz,12x: Products of inertia
m,p:
47 Total velocity of missile

(=U2+V2 +W2))

Missile mass and air density
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My : Mach number (=¥ /Vs)

M MM  X5Y=Z-components of the vector of
aerodynamic moments

D,q,r X5Y=Z— components of the angular
velocity vector of the missile

Q: Dynamic Pressure (=p |VM |2 / 2)

S,D: Aerodynamic reference area and length
of the missile

T: Thrust force

u,v,w X=Y=Z— components of the linear
velocity vector of the missile

Vs: Velocity of sound

(X,Y,Z): Missile body coordinate system

X : Derivative of x with respect to time

”x” : Euclidean norm of the vector x e R~

.. supfx(o)]
120

a,p: Angle-of-attack and sideslip angle in
radians:

(a =tan-1(W/U), p=tan-1(V/U))

or,04: Total angle-of-attack and bank angle
(a, =tan' (NV? + W?* /U),
¢, =tan” (V/W))

OE,00,0r : Deflection of Even, Odd, and Roll
control fin; Even and odd control fins
are approximately related with axial
control fins as follows:
6E = 5(] +§r, 60 = _5q +5r

0£,0§,05: Yaw, Pitch, and Roll fin command

APPENDIX A: PROOF OF THEOREM 1
The first and second rows in (24) can be augmented
in matrix form as

W=A11W+Alzeo, (Al)
where
-6 0 -6 0
W= Ey A _ 0 _91 0 _62
ey M1 0 0 0 P
0 1 0 0
= O
m(Xh, + D)
(HUCnr —Kr[M) O
« 0 (HUCququ])w) )
0 0
0 0

the upper bound of norms
and “eo(t)“ as

Here we derive

“ev follows:

Since Aj1 is a Hurwiz matrix for 6,62 >0, there
exists a positive definite matrix P satisfying

AL P+ P4 =-0 (A2)

for some positive definite matrix Q. Define Lyapunov
function candidates as

|
" =EWTPW, £} =%egeo. (A3)

Differentiating ¥; with respect to time, and using (A1)
(A2), and (A3), we have

V= %(WTA]T1 +efAL)Pw+ ;WTP(AI 1w+ Ai2ep)
%WT(A P+Pa)w+— (egA Pw+wT P4 2ep)
< ——wTQW+ At (P)-[65] -[ ] - Jeo]

2n(Q) YA
S p) 1T [65]- Jeo] -2 Tk

where Ay (P) and An(P) are the maximum and

minimum eigenvalues of matrix P, respectively and
the vector &5 is defined as follows:

thv (HUCnr — KrIM)
m(Xhy + D)

&

If we define v1 = \/71 , above inequality yields

s ﬂm(Q) Am (P) A4
Ul < 2/1M(P) \/W” 3” ”60” (Ad)

Integrating above equation with respect to time gives

Am (P)
N2Am(P) (A5)

X J-(;”%” Jleo(@)]|- e-ot-ndz

u(t) < vi(0)e-ot +

where o =4n(Q0)/2Am (P)>0. Hence, from (A3)
and (37), (AS) yields

e < Sfe~ot
A6
5 ol loof-e-ov-oar, 4
lea®) <Jlen ()] + |eo )] < Ste-er
(A6b)

+83 [jl6s] leo @) - otz + Jeo )]
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where

. [ 2
Sy = /——/Im(P)w(O), s

Now, we take the time derivative of V2 in (A3) and

« _ Am(P)
27 Im(P)’

proceed asin 7 to obtain
leo @ <eo @zl + [[iace)|- e A2l dr (A7)

From (A6a), (A6b), and (A7), the boundedness of
ev,en,edy,e0 depends on that of /.

We take h(a, B.uy,uz) into account. By using
(22), the time derivative of (28) becomes

d d(h
_h a, P, ZJUz ) =— 7
oo Pityitiz) dt(hz)

_ {_ (BXeg ~1)(Xeghy + Dym

Ini(hy + DB) 2
UQSD nye
S R R R (A8)
P+ DB) 2 A”Mvz)
iy
Un(Xeghy +D) 4 || U _( pﬁj
IvUw+DB) 7 || _tz | \pa)l’
U

and again, taking the time derivative of (14), we have

1
(oo Y d o o)
E”‘( J {dtw) 4 Aw}v

X
(Xeghy, +Dym . (A9)
o0 | 4o
+L(Xcghv+D)mJ % An ez
and
-1
Lt <|—E52 | g
Uil <22
(B -]+ 62 - Jerz])) (A10)
=u- v”+u;-”eyz ,
where 8,y is a positive constant which satisfies
1(14“)—6‘ A<l 4! (A11)
dt uv 1 uv || — T uv uy
and u{ and u) are given as
uf =Ouw| At |, us =624} . (A12)

The derivation of (A11) is given in Appendix B.

From the fourth condition of Assumption 3, u;

and u; are bounded independent of o and fS.

Also, from Proposition 1, the stabilized dynamics of
reduced system result in

(Ayc (t) - Ay (t)\J
A, ()—A4,@)
for some positive constants Av and A4. As can be

seen in (13), it should be noted that A4 is a bound

converging to zero asymptotically. Thus, we have
inequalities

<Ay (A13)

o[ < 4,

Mo <4 tlels ezl <2 +leal,,  (A14)
and (A10) yields
1. * *
gl <Gl vl

= w -], +uz-eal, + @i A, 4103 Ag).
Combining (AS8), (Al4), and (Al5), we have the

inequality

*
+713

o0

* = |U
< oM +m )7

d
Hzth(a, o)

< +umle, +umleal, +Am
+(uy Ay + 1z A )17 + 173

= A fel, +mleal, +75,

(A16)

where
% _HA_]H' _(BXcg_l)(Xcghv+D)m
U 1, (h, + DB)
UQSD O

P Tasthy 08
x Um(Xcghv +D) 1
2 = (h, + DB) 7
*_Um(Xcghv-{—D).“Avl . pﬂ
"+ DBy 12 pa

b =n +un,,
h; :’6772,
hy = A, + (A, +1ua Ay )i + 173

After several algebraic operations, we have the
inequality

Jo

< Hl*e_m + H; + I; H; ||e0 (1')” ey,

oo g,

L e, oy )
at (A17)
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where
S ] R A
* _ hl*+h§ * *
3 _”A2“—O'S2H63”+h2.

For the proof of (A17), see Appendix C.
Substituting (A17) into (A7) and using Gronwall-
Bellman Inequality [13], we have

leo®)| < [eo @12k + Hye-or + H
+ folleo@le bl + e o+ s (arg)

x e=0(t=1) - exp( Lf He-ol-$)d¢)dr

and this yields
”60 (f)” < ”eo (O)He‘”AZHf +Hle-o' + H}
H*
o -J(M(M —el2lry (a19)
4] -o

. H{ +eH; j ’
oe
where e is the base of natural logarithm. In (A18),
H},i=1,2,3, are all bounded and the other terms are
exponentially decaying. Therefore, from Assumption
2, the steady state error of eo(z) will be bounded as

— H(HY + el
leo®)|,, < H3+H}-eo ——] (A20)

and this bound depends on the initial values and
design parameters. O

APPENDIX B: DERIVATION OF (A11)

The relation between d(Az)/dt and Azl is
shown by approximating the aerodynamic coefficients
as polynomials. As in many researches [10,12], [15],
the nonlinear aerodynamic coefficients can be fitted as
polynomial functions with sufficient accuracy. Here,
we define a function which describes the order of the
given polynomial.

order| A] =the order of polynomial 4 .

For simplicity, instead of using the original
Cua(a, ), we assume that C, is dependent on only
£ as in SISO system, and the Jacobian matrix in (9)

is replaced with a scalar function defined as
Auw(B)=0Ca/0B ; Since we can proceed with

Ca(a, ) in the same manner. Suppose that original

coefficient C, can be approximated by an n-th order
polynomial function in A with sufficient accuracy

as
Ca(f) =P +an1pn ! +---+ap, (B1)
oC,
T (B2)

=npfrl +ap 1 (n—-)pr2 +---+ai.

From (32a), we have

d oAy 1 :
Ly =2
dt of  (Aw)?
(B3)
aAuv 1 1 % -1
= . Vy . = A - AMV .
op  (Aw)? Ay
where
A ——a;”v. Aul vy
B () B

nn-Dpr2+-+m ,
(B + ana (=12 +- a2

From (23), we have

order[v,] < order[d4,]=order[Cyq]=n.
Also, checking the order of v, in (B4), the order of
A" is lower than or equal to zero, i.e.,

order[4*] < 0.

Accordingly, from the second condition of
Assumption 3 and (B2), the denominator polynomial
of A* is positive and also independent of the value
of fB; thus, 4* can be bounded for some proper

constant Ag as
47 = 2.

which yields

< Ap| A

d
”E (AJ\})

Finally, (A11) can be described again as

= (/Iﬂ +1)' A;\} = 49uv A,TJ

>

d
—(Ai) =0 A
Hdt( )6

where G =Ap +1.

APPENDIX C: PROOF OF (A17)

d | A2 (|(—
e Bouyus e |42l 4,

Ja
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< [0 (1 Y@+ 25 fea @ + 15 e 12k

< 1A len@)+ 1 | Jeo @] + 45

er“Azn(H)dT

ey (7)) + h;‘)

* * * l — —|
<(h +h2){51 ”A—”—G(e ot _ gl
B

#5305 o O =" = W2k |

[ L e - IO e

ol
+——(1-e )
|42

< <7h1* +hy Sfet > + <£>
| 4] -0 | 4|

2 S )
+<[1#S2 ||93||”60([)”*(e ot

o _e*”Azuf)

LAl ool 7 ar)

<(Hie )+ (H; >+< fiH; ;|eo<r>u-e—a<f—r>df>,

where

H =M e g B
B A Y
h*+h* ® *

Hy =2 53 |l8, ]| + .
I

Substituting (A16) into (A7), we have the first
inequality. The second and third inequalities come
from (16) and (A6a), respectively. In the fourth

inequality, we used the condition, 0 <o < ”Az” . O
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