• Title/Summary/Keyword: Minimal Surfaces

Search Result 125, Processing Time 0.023 seconds

SURFACE BUNDLES OVER SURFACES WITH A FIXED SIGNATURE

  • Lee, Ju A
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.545-561
    • /
    • 2017
  • The signature of a surface bundle over a surface is known to be divisible by 4. It is also known that the signature vanishes if the fiber genus ${\leq}2$ or the base genus ${\leq}1$. In this article, we construct new smooth 4-manifolds with signature 4 which are surface bundles over surfaces with small fiber and base genera. From these we derive improved upper bounds for the minimal genus of surfaces representing the second homology classes of a mapping class group.

SINGULAR MINIMAL TRANSLATION GRAPHS IN EUCLIDEAN SPACES

  • Aydin, Muhittin Evren;Erdur, Ayla;Ergut, Mahmut
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.1
    • /
    • pp.109-122
    • /
    • 2021
  • In this paper, we consider the problem of finding the hypersurface Mn in the Euclidean (n + 1)-space ℝn+1 that satisfies an equation of mean curvature type, called singular minimal hypersurface equation. Such an equation physically characterizes the surfaces in the upper half-space ℝ+3 (u) with lowest gravity center, for a fixed unit vector u ∈ ℝ3. We first state that a singular minimal cylinder Mn in ℝn+1 is either a hyperplane or a α-catenary cylinder. It is also shown that this result remains true when Mn is a translation hypersurface and u is a horizantal vector. As a further application, we prove that a singular minimal translation graph in ℝ3 of the form z = f(x) + g(y + cx), c ∈ ℝ - {0}, with respect to a certain horizantal vector u is either a plane or a α-catenary cylinder.

INVOLUTIONS ON SURFACES OF GENERAL TYPE WITH pg = 0 I. THE COMPOSED CASE

  • Shin, YongJoo
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.3
    • /
    • pp.425-432
    • /
    • 2013
  • Let S be a minimal surface of general type with $p_g(S)=q(S)=0$ having an involution ${\sigma}$ over the field of complex numbers. It is well known that if the bicanonical map ${\varphi}$ of S is composed with ${\sigma}$, then the minimal resolution W of the quotient $S/{\sigma}$ is rational or birational to an Enriques surface. In this paper we prove that the surface W of S with $K^2_S=5,6,7,8$ having an involution ${\sigma}$ with which the bicanonical map ${\varphi}$ of S is composed is rational. This result applies in part to surfaces S with $K^2_S=5$ for which ${\varphi}$ has degree 4 and is composed with an involution ${\sigma}$. Also we list the examples available in the literature for the given $K^2_S$ and the degree of ${\varphi}$.

Computer-aided Design and Fabrication of Bio-mimetic Scaffold for Tissue Engineering Using the Triply Periodic Minimal Surface (삼중 주기적 최소곡면을 이용한 조직공학을 위한 생체모사 스캐폴드의 컴퓨터응용 설계 및 제작)

  • Yoo, Dong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.7
    • /
    • pp.834-850
    • /
    • 2011
  • In this paper, a novel tissue engineering scaffold design method based on triply periodic minimal surface (TPMS) is proposed. After generating the hexahedral elements for a 3D anatomical shape using the distance field algorithm, the unit cell libraries composed of triply periodic minimal surfaces are mapped into the subdivided hexahedral elements using the shape function widely used in the finite element method. In addition, a heterogeneous implicit solid representation method is introduced to design a 3D (Three-dimensional) bio-mimetic scaffold for tissue engineering from a sequence of computed tomography (CT) medical image data. CT image of a human spine bone is used as the case study for designing a 3D bio-mimetic scaffold model from CT image data.

COMPLETE MAXIMAL SPACE-LIKE HYPERSURFACES IN AN ANTI-DE SITTER SPACE

  • Choi, Soon-Meen;Ki, U-Hang;Kim, He-Jin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.31 no.1
    • /
    • pp.85-92
    • /
    • 1994
  • It is well known that there exist no closed minimal surfaces in a 3-dimensional Euclidean space R$^{3}$. Myers [4] generalized the result to the case of the higher dimension and proved that there are no closed minimal hypersurfaces in an open hemisphere. The complete and non-compact version concerning Myers' theorem is recently considered by Cheng [1] and the following theorem is proved.

  • PDF

Lower Bounds on Boundary Slope Diameters for Montesinos Knots

  • Ichihara, Kazuhiro;Mizushima, Shigeru
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.2
    • /
    • pp.321-348
    • /
    • 2009
  • In this paper, we give two lower bounds on the diameter of the boundary slope set of a Montesinos knot. One is described in terms of the minimal crossing numbers of the knots, and the other is related to the Euler characteristics of essential surfaces with the maximal/minimal boundary slopes.

CONSTANT CURVATURES AND SURFACES OF REVOLUTION IN L3

  • Kang, Ju-Yeon;Kim, Seon-Bu
    • Honam Mathematical Journal
    • /
    • v.38 no.1
    • /
    • pp.151-167
    • /
    • 2016
  • In Minkowskian 3-spacetime $L^3$ we find timelike or spacelike surface of revolution for the given Gauss curvature K = -1, 0, 1 and mean curvature H = 0. In fact, we set up the surface of revolution with the time axis for z-axis to be able to draw those surfaces on standard pictures in Minkowskian 3-spacetime $L^3$.

SPHERICAL SUBMANIFOLDS WITH FINITE TYPE SPHERICAL GAUSS MAP

  • Chen, Bang-Yen;Lue, Huei-Shyong
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.2
    • /
    • pp.407-442
    • /
    • 2007
  • The study of Euclidean submanifolds with finite type "classical" Gauss map was initiated by B.-Y. Chen and P. Piccinni in [11]. On the other hand, it was believed that for spherical sub manifolds the concept of spherical Gauss map is more relevant than the classical one (see [20]). Thus the purpose of this article is to initiate the study of spherical submanifolds with finite type spherical Gauss map. We obtain several fundamental results in this respect. In particular, spherical submanifolds with 1-type spherical Gauss map are classified. From which we conclude that all isoparametric hypersurfaces of $S^{n+1}$ have 1-type spherical Gauss map. Among others, we also prove that Veronese surface and equilateral minimal torus are the only minimal spherical surfaces with 2-type spherical Gauss map.