DOI QR코드

DOI QR Code

SURFACE BUNDLES OVER SURFACES WITH A FIXED SIGNATURE

  • Lee, Ju A (Department of Mathematical Sciences Seoul National University)
  • Received : 2016.02.25
  • Published : 2017.03.01

Abstract

The signature of a surface bundle over a surface is known to be divisible by 4. It is also known that the signature vanishes if the fiber genus ${\leq}2$ or the base genus ${\leq}1$. In this article, we construct new smooth 4-manifolds with signature 4 which are surface bundles over surfaces with small fiber and base genera. From these we derive improved upper bounds for the minimal genus of surfaces representing the second homology classes of a mapping class group.

Keywords

Acknowledgement

Supported by : National Research Foundation(NRF) of Korea

References

  1. M. F. Atiyah, The signature of fibre-bundles, Global Analysis (Papers in Honor of K. Kodaira), pp. 73-84, Univ. Tokyo Press, Tokyo, 1969.
  2. R. I. Baykur and D. Margalit, Indecomposable surface bundles over surfaces, J. Topol. Anal. 5 (2013), no. 1, 161-181. https://doi.org/10.1142/S179352531350009X
  3. K. S. Brown, Cohomology of Groups, Graduate Texts in Mathematics 87, Springer-Verlag, 1982.
  4. J. Bryan and R. Donagi, Surface bundles over surfaces of small genus, Geom. Topol. 6 (2002), 59-67. https://doi.org/10.2140/gt.2002.6.59
  5. J. Bryan, R. Donagi, and A. Stipsicz, Surface bundles: some interesting examples, Turkish J. Math. 25 (2001), no. 1, 61-68.
  6. H. Endo, A construction of surface bundles over surfaces with non-zero signature, Osaka J. Math. 35 (1998), no. 4, 915-930.
  7. H. Endo, Meyer's signature cocycle and hyperelliptic fibrations, Math. Ann. 316 (2000), no. 2, 237-257. https://doi.org/10.1007/s002080050012
  8. H. Endo, M. Korkmaz, D. Kotschick, B. Ozbagci, and A. Stipsicz, Commutators, Lefschetz fibrations and the signatures of surface bundles, Topology 41 (2002), no. 5, 961-977. https://doi.org/10.1016/S0040-9383(01)00011-8
  9. H. Endo, T. E. Mark, and J. Van Horn-Morris, Monodromy substitutions and rational blowdowns, J. Topol. 4 (2011), no. 1, 227-253. https://doi.org/10.1112/jtopol/jtq041
  10. H. Endo and S. Nagami Signature of relations in mapping class groups and nonholomorphic Lefschetz fibrations, Trans. Amer. Math. Soc. 357 (2005), no. 8, 3179-3199. https://doi.org/10.1090/S0002-9947-04-03643-8
  11. B. Farb and D. Margalit, A primer on mapping class groups, Princeton Mathematical Series 49 Princeton University Press, Princeton, NJ, 2012.
  12. N. Hamada, Upper bounds for the minimal number of singular fibers in a Lefschetz fibration over the torus, Michigan Math. J. 63 (2014), no. 2, 275-291. https://doi.org/10.1307/mmj/1401973051
  13. U. Hamenstadt, Signatures of Surface bundles and Milnor Wood Inequalities, preprint, http://arxiv.org/pdf/1206.0263
  14. J. Harer, The second homology group of the mapping class group of an orientable surface, Invent. Math. 72 (1983), no. 2, 221-239. https://doi.org/10.1007/BF01389321
  15. F. Hirzebruch, The signature of ramified coverings, Global Analysis (Papers in Honor of K. Kodaira), pp. 253-265, Univ. Tokyo Press, Tokyo, 1969.
  16. M. Hoster, A new proof of the signature formula for surface bundles, Topology Appl. 112 (2001), no. 2, 205-213. https://doi.org/10.1016/S0166-8641(99)00233-3
  17. R. Kirby, Problems in Low-Dimensional Topology, in W. Kazez(Ed.), Geometric Topology, AMS/IP Studies in Advanced Mathematics, Vol.2.2, American Mathematical Society, Providence, RI, 1997.
  18. K. Kodaira, A certain type of irregular algebraic surfaces, J. Anal. Math. 19 (1967), 207-215.
  19. M. Korkmaz, Stable Commutator Length of a Dehn Twist, Michigan Math. J. 52 (2004), no. 1, 23-31. https://doi.org/10.1307/mmj/1080837732
  20. M. Korkmaz and B. Ozbagci, Minimal number of singular fibers in a Lefschetz fibration, Proc. Amer. Math. Soc. 129 (2001), no. 5, 1545-1549. https://doi.org/10.1090/S0002-9939-00-05676-8
  21. M. Korkmaz and B. Ozbagci, On sections of elliptic fibrations, Michigan Math. J. 56 (2008), no. 1, 77-87. https://doi.org/10.1307/mmj/1213972398
  22. M. Korkmaz and A. Stipsicz, The second homology groups of mapping class groups of oriented surfaces, Math. Proc. Cambridge Philos. Soc. 134 (2003), no. 3, 479-489. https://doi.org/10.1017/S0305004102006461
  23. D. Kotschick, Signatures, Monopoles, and Mapping class groups, Math. Res. Lett. 5 (1998), no. 1-2, 227-234. https://doi.org/10.4310/MRL.1998.v5.n2.a9
  24. Y. Matsumoto, Lefschetz Fibrations of genus two - a topological approach, Topology and Teichmuller spaces, 123-148, World Sci.Publ., River Edge, NJ, 1996.
  25. W. Meyer, Die Signatur von lokalen Koeffzientensystemen und Faserbundeln, Bonn. Math. Schr. 53 (1972), 59 pp.
  26. W. Meyer, Die Signatur von Flachenbundeln, Math. Ann. 201 (1973), 239-264. https://doi.org/10.1007/BF01427946
  27. S. Morita, Characteristic classes of surface bundles, Invent. Math. 90 (1987), no. 3, 551-577. https://doi.org/10.1007/BF01389178
  28. B. Ozbagci, Signatures of Lefschetz fibrations, Pacific J. Math. 202 (2002) no. 1, 99-118.
  29. J. Powell, Two theorems on the mapping class group of a surface, Proc. Amer. Math. Soc. 68 (1978), no. 3, 347-350. https://doi.org/10.1090/S0002-9939-1978-0494115-8
  30. T. Sakasai, Lagrangian mapping class groups from a group homological point of view, Algebr. Geom. Topol. 12 (2012), no. 1, 267-291. https://doi.org/10.2140/agt.2012.12.267
  31. A. Stipsicz, Surface bundles with nonvanishing signature, Acta Math. Hungar. 95 (2002), no. 4, 299-307. https://doi.org/10.1023/A:1015649208611
  32. B. Wajnryb, An elementary approach to the mapping class group of a surface, Geom. Topol. 3 (1999), 405-466. https://doi.org/10.2140/gt.1999.3.405
  33. C. T. C. Wall, Non-additivity of the signature, Invent. Math. 7 (1969), 269-274. https://doi.org/10.1007/BF01404310