DOI QR코드

DOI QR Code

THE GROUP OF STRONG GALOIS OBJECTS ASSOCIATED TO A COCOMMUTATIVE HOPF QUASIGROUP

  • Alvarez, Jose N. Alonso (Departamento de Matematicas Facultad de Economicas Universidad de Vigo Campus Universitario Lagoas-Marcosende) ;
  • Rodriguez, Ramon Gonzalez (Departamento de Matematica Aplicada II E.T.S.I. Telecomunicacion Universidad de Vigo Campus Universitario Lagoas-Marcosende) ;
  • Vilaboa, Jose M. Fernandez (Departamento de Alxebra Facultad de Matematicas Universidad de Santiago de Compostela)
  • Received : 2016.02.20
  • Published : 2017.03.01

Abstract

Let H be a cocommutative faithfully flat Hopf quasigroup in a strict symmetric monoidal category with equalizers. In this paper we introduce the notion of (strong) Galois H-object and we prove that the set of isomorphism classes of (strong) Galois H-objects is a (group) monoid which coincides, in the Hopf algebra setting, with the Galois group of H-Galois objects introduced by Chase and Sweedler.

Keywords

References

  1. J. N. Alonso Alvarez, J. M. Fernandez Vilaboa, R. Gonzalez Rodriguez, and C. Soneira Calvo, Projections and Yetter-Drinfeld modules over Hopf (co)quasigroups, J. Algebra 43 (2015), 153-199.
  2. J. N. Alonso Alvarez, J. M. Fernandez Vilaboa, R. Gonzalez Rodriguez, and C. Soneira Calvo, Cleft comodules over Hopf quasigroups, Commun. Contemp. Math. 17 (2015), no. 6, 1550007, 20 pp. https://doi.org/10.1142/S0219199715500078
  3. H. Bass, Lectures on topics in algebraic K-theory, Notes by Amit Roy, Tata Institute of Fundamental Research Lectures on Mathematics, 41, Tata Institute of Foundamental Research, Bombay, 1967.
  4. M. Beattie, A direct sum decomposition for the Brauer group of H-module algebras, J. Algebra 43 (1976), no. 2, 686-693. https://doi.org/10.1016/0021-8693(76)90134-4
  5. R. H. Bruck, Contributions to the theory of loops, Trans. Amer. Math. Soc. 60 (1946), 245-354. https://doi.org/10.1090/S0002-9947-1946-0017288-3
  6. S. Caenepeel, A variation of Sweedler's complex and the group of Galois objects of an infinite Hopf algebra, Comm. Algebra 24 (1996), no. 9, 2991-3015. https://doi.org/10.1080/00927879608825726
  7. S. U. Chase and M. E. Sweedler, Hopf algebras and Galois theory, Lecture Notes in Mathematics, 97 Springer-Verlag, Berlin-New York 1969.
  8. J. Klim and S. Majid, Hopf quasigroups and the algebraic 7-sphere, J. Algebra 323 (2010), no. 11, 3067-3110. https://doi.org/10.1016/j.jalgebra.2010.03.011
  9. M. P. Lopez Lopez, Objetos de Galois sobre un algebra de Hopf finita, Alxebra 25, Universidad de Santiago de Compostela, Departamento de Algebra, Santiago de Compostela, 1980.
  10. M. P. Lopez Lopez and E. Villanueva Novoa, The antipode and the (co)invariants of a finite Hopf (co)quasigroup, Appl. Categ. Structures 21 (2013), no. 3, 237-247. https://doi.org/10.1007/s10485-011-9260-5
  11. J. M. Perez-Izquierdo, Algebras, hyperalgebras, nonassociative bialgebras and loops, Adv. Math. 208 (2007), no. 2, 834-876. https://doi.org/10.1016/j.aim.2006.04.001
  12. J. M. Perez-Izquierdo and I. P. Shestakov, An envelope for Malcev algebras, J. Algebra 272 (2004), no. 1, 379-393. https://doi.org/10.1016/S0021-8693(03)00389-2
  13. J. M. Fernandez Vilaboa, Grupos de Brauer y de Galois de un algebra de Hopf en una categoria cerrada, Alxebra 42, Universidad de Santiago de Compostela, Departamento de Algebra, Santiago de Compostela, 1985.
  14. J. M. Fernandez Vilaboa, E. Villanueva Novioa, and Gonzalez Rodriguez, Exact sequences for the Galois group, Comm. Algebra 24 (1996), no. 11, 3413-3435. https://doi.org/10.1080/00927879608825758