• Title/Summary/Keyword: MgFe$_2$

Search Result 2,408, Processing Time 0.033 seconds

Effects of Fe and Cu Addition on the Microstructure and Tensile Properties of Al-Si-Mg Alloy for Compound Casting (복합주조용 Al-Si-Mg합금의 미세조직 및 인장성질에 미치는 Fe 및 Cu 첨가의 영향)

  • Kim, Jeong-Min;Jung, Ki-Chae;Kim, Chae-Young;Shin, Je-sik
    • Journal of Korea Foundry Society
    • /
    • v.41 no.1
    • /
    • pp.3-10
    • /
    • 2021
  • In the compound casting between the aluminum alloy and the cast iron, the iron component may be dissolved from the cast iron during the process and mixed into the aluminum melt, thereby forming various iron-containing intermetallic compounds and significantly deteriorating the tensile properties of the aluminum alloy. On the other hand, unlike Fe, which is added as an impurity, Cu is added to improve the mechanical properties of the aluminum alloy. In this study, the change in microstructure and tensile properties of aluminum alloys due to the addition of Fe and Cu was investigated. A large amount of iron-containing compounds such as coarse Al5FeSi phases were formed when the iron content was 1% or more, and the tensile properties were significantly reduced. In the case of the aluminum alloy to which Cu was added, an Al2Cu phase was additionally formed and the tensile strength was clearly improved.

Comparisons of Inorganic Compounds between the Ginsengs, Keumsan, Chungnam and their Soils (충남 금산의 인삼 및 토양의 무기 원소 함량 비교)

  • Song, Suck-Hwan;You, Seon-Gyun;Kim, Ill-Chool
    • Korean Journal of Plant Resources
    • /
    • v.20 no.1
    • /
    • pp.12-21
    • /
    • 2007
  • Ginsengs (1,2 3 years) from the Keumsan are analysed for the inorganic compounds and compared with the their soils from the granite, phyllite and shale areas. In the soils, the granite areas show high $Al_2O_3\;and\;Na_2O$ contents while the phyllite areas have high $Fe_2O_3,\;MnO\;and\;MgO$ contents. Positive correlations are shown in the $Al_2O_3-K_2O\;and\;Fe_2O_3-MgO$ pairs while negative correlations are shown in the $SiO_2-CaO$ pair. In the ginsengs, the shale areas are high in the most of the elements, but low in the granite areas. Compared with same soils of different ages, Al, Na and Ti contents of the ginsengs are high in the all areas. The shale areas are mainly high in the upper parts while the granite areas are mainly high in the root parts. Regardless of the localities, Fe, Mn and Ca contents are high in the upper parts while Ti contents are high in the root parts with differences of several times. Relative ratios between field soils and ginsengs (field soil/ginseng) suggest that the ginsengs show high Ca contents with differences of several ten times whereas the soils have high Na, Fe, Ti and Al contents with differences of several times. Regardless of the localities, the ratios of the Al, Mn and Na are high in the 2 year relative to the 3 year. Overall ratios between field soils and ginsengs are mainly big in the 2 year area relative to the 3 year area. It suggests that contents of the 3 year ginsengs are more similar to those of their soils relative to the 2 year and the ginsengs may absorpt eligible element contents with increasing ages.

Element Dispersion and Wallrock Alteration from Samgwang Deposit (삼광광상의 모암변질과 원소분산)

  • Yoo, Bong-Chul;Lee, Gil-Jae;Lee, Jong-Kil;Ji, Eun-Kyung;Lee, Hyun-Koo
    • Economic and Environmental Geology
    • /
    • v.42 no.3
    • /
    • pp.177-193
    • /
    • 2009
  • The Samgwang deposit consists of eight massive mesothermal quartz veins that filled NE and NW-striking fractures along fault zones in Precambrian granitic gneiss of the Gyeonggi massif. The mineralogy and paragenesis of the veins allow two separate discrete mineralization episodes(stage I=quartz and calcite stage, stage II-calcite stage) to be recognized, temporally separated by a major faulting event. The ore minerals are contained within quartz and calcite associated with fracturing and healing of veins that occurred during both mineralization episodes. The hydrothermal alteration of stage I is sericitization, chloritization, carbonitization, pyritization, silicification and argillization. Sericitic zone occurs near and at quartz vein and include mainly sericite, quartz, and minor illite, carbonates and chlorite. Chloritic zone occurs far from quartz vein and is composed of mainly chlorite, quartz and minor sericite, carbonates and epidote. Fe/(Fe+Mg) ratios of sericite and chlorite range 0.45 to 0.50(0.48$\pm$0.02) and 0.74 to 0.81(0.77$\pm$0.03), and belong to muscovite-petzite series and brunsvigite, respectiveIy. Calculated $Al_{IV}$-FE/(FE+Mg) diagrams of sericite and chlorite suggest that this can be a reliable indicator of alteration temperature in Au-Ag deposits. Calculated activities of chlorite end member are $a3(Fe_5Al_2Si_3O_{10}(OH)_6$=0.0275${\sim}$0.0413, $a2(Mg_5Al_2Si_3O_{10}(OH)_6$=1.18E-10${\sim}$7.79E-7, $a1(Mg_6Si_4O_{10}(OH)_6$=4.92E-10${\sim}$9.29E-7. It suggest that chlorite from the Samgwang deposit is iron-rich chlorite formed due to decreasing temperature from high temperature(T>450$^{\circ}C$). Calculated ${\alpha}Na^+$, ${\alpha}K^+$, ${\alpha}Ca^{2+}$, ${\alpha}Mg^{2+}$ and pH values during wallrock alteration are 0.0476($400^{\circ}C$), 0.0863($350^{\circ}C$), 0.0154($400^{\circ}C$), 0.0231($350^{\circ}C$), 2.42E-11($400^{\circ}C$), 7.07E-10($350^{\circ}C$), 1.59E-12($400^{\circ}C$), 1.77E-11($350^{\circ}C$), 5.4${\sim}$6.4($400^{\circ}C$), 5.3${\sim}$5.7($350^{\circ}C$)respectively. Gain elements(enrichment elements) during wallrock alteration are $TiO_2$, $Fe_2O_3(T)$,CaO, MnO, MgO, As, Ag, Cu, Zn, Ni, Co, W, V, Br, Cs, Rb, Sc, Bi, Nb, Sb, Se, Sn and Lu. Elements(Ag, As, Zn, Sc, Sb, Rb, S, $CO_2$) represents a potential tools for exploration in mesothermal and epithermal gold-silver deposits.

Characteristics of Fe Reduction Process of Shallow Groundwater in a Reclaimed Area, Kim-je (김제시 간척지역 천부 지하수내 철 환원작용 특성에 대한 고찰)

  • Kim, Ji-Hoon;Cheong, Tae-Jin;Ryu, Jong-Sik;Kim, Rak-Hyeon
    • Economic and Environmental Geology
    • /
    • v.46 no.1
    • /
    • pp.39-50
    • /
    • 2013
  • The study area is located on the western coastal region of Korea, partly had been reclaimed lands. Groundwaters of the coastal area show lower Eh and DO values (Eh: 0.57 V ${\rightarrow}$ 0.13 V, DO; 9.7 mg/l ${\rightarrow}$ 1.3 mg/l), and higher Fe concentrations (> 20 mg/l) than those of the inner land (< 0.3 mg/l), indicating that the redox condition of groundwater changes from oxic into suboxic/anoxic conditions as it flows from the inland toward the coastal area. In addition, Fe speciation of groundwater from the coastal area demonstrates that the most dissolved Fe exist as $Fe^{2+}$, reflecting that groundwater is under the anoxic condition to sufficiently occur Fe reduction. According to the result of Fe extraction with the sediment samples from three wells (A, B, C), the sediments provide enough $Fe^{3+}$ to occur the Fe reduction in the groundwater. Integrated all results of the groundwater and sediment, we infer that the Fe reduction to occur in groundwater is associated with the reclamation processes of the study area.

A feasibility of coagulation as post-treatment of the anaerobic fluidized bed reactor (AFBR) treating domestic wastewater (도시하수 처리 혐기성 유동상 반응조의 후속공정으로서 화학응집의 가능성 평가)

  • Yang, Seung Yong;Bae, Jae Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.6
    • /
    • pp.623-634
    • /
    • 2014
  • This study examined a feasibility of coagulation as post-treatment to remove sulfide and phosphorus for the effluent of anaerobic fluidized bed reactor (AFBR) treating domestic wastewater. Removal efficiencies of sulfide, phosphorus and COD by coagulation were not affected by pH in the range of 5.9 to 7.2. Alkalinity requirement could be estimated by the amount of $Fe^{3+}$ to form $Fe(OH)_{3(S)}$ and to remove sulfide and phosphorus. At coagulant aid dosage of 2 mg/L, anionic polymer showed best results regarding size and settleability of flocs. Sulfide removal for the AFBR effluent at the $Fe^{3+}/S^{2-}$ ratio of 0.64, close to the theoretical value of 0.67 found with a synthetic wastewater, was only 75.2%. One of the reasons for this high $Fe^{3+}/S^{2-}$ ratio requirement is that the AFBR effluent contains sulfide, phosphorus, hydroxide and bicarbonate which can react with $Fe^{3+}$ competitively. Concentrations of sulfide and phosphorous reduced to below 0.1 and 0.5 mg/L, respectively, at the $Fe^{3+}/S^{2-}$ ratio of 2.0. Average effluent COD of 80 mg/L, mostly soluble COD, was obtained at the dosage 50 mg $Fe^{3+}/L$ ($Fe^{3+}/S^{2-}$ ratio of 2.0) with corresponding COD removal of 55%. For better removal of COD, soluble COD removal at the AFBR should be enhanced. Coagulation with $Fe^{3+}$ removed sulfide, phosphorus and COD simultaneously in the AFBR effluent, and thus could be an alternative process for the conventional wastewater treatment processes where relatively high quality effluent is not required.

Hydrogen Storage Properties of Hydriding-Dehydriding Cycled Magnesium-Nickel-Iron Oxide Alloy

  • Song, Myoung Youp;Kwon, Sung Nam;Park, Hye Ryoung;Kim, Byoung-Goan
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.2
    • /
    • pp.171-175
    • /
    • 2012
  • By measuring the absorbed hydrogen quantity as a function of the number of cycles, the cycling properties of the Mg-15 wt%Ni-5 wt%$Fe_2O_3$ alloy were investigated. The absorbed hydrogen quantity decreased as the number of cycles increased. The $H_a$ value varied almost linearly with the number of cycles. The maintainability of absorbed hydrogen quantity at n=100 was 89.0% for the hydriding reaction time of 10 min. After the $150^{th}$ hydriding-dehydriding cycle, Mg, $Mg_2Ni$, $Mg(OH)_2$, MgO, and Fe were observed. The phases were analyzed by Rietveld analysis from the XRD patterns of the Mg-15 wt%Ni-5 wt%$Fe_2O_3$ alloy after 150 hydriding-dehydriding cycles. The crystallite size and strain of Mg were then estimated with the Williamson-Hall technique.

Emission Characterization of Particulate Matters According to the Types of Wastes from Industrial Waste Incinerator (산업폐기물 소각시설에서 폐기물 유형에 따른 입자상물질의 배출특성)

  • Park, Jeong-Ho;Suh, Jeong-Min;Jo, Jeong-Gu;Ryu, Jae-Yong;Han, Seong-Jong
    • Journal of Environmental Science International
    • /
    • v.16 no.11
    • /
    • pp.1225-1230
    • /
    • 2007
  • The emissions characteristics of particulate matters(PM) according to the types of wastes from industrial waste incinerator of 800 kg/hr treatment capacity were investigated. For this study, the incinerate waste are as follows; waste resin, waste wood, waste urethane, waste gunny, and waste paper. The particulate samples were collected to be emitted in stack and air pollution control(both cyclone and bag filter). In stack, the concentrations of PM were in the range of 2.61 to $26.51 mg/Sm^3$ and the major chemical species were C, Si, Cl, K, Na, Ca in all the wastes. In cyclone fly ash, the mean content of heavy metal were in the order of Fe > Zn > Pb > Cu > Mn > Cr > Ni > Cd > As > Hg and the heavy metal content of waste resin were Zn 34,197.5 mg/kg, Fe 27,587.6 mg/kg, Pb 6,055.8 mg/kg, respectively. In bag filter fly ash, the mean content of heavy metal were in the order of Zn > Pb > Fe > Cu > Mn > Cd > Cr > Ni > As > Hg and the heavy metal content of waste wood were Pb 36,405.2 mg/kg, Fe 15,762.9 mg/kg, Cu 9,989.5 mg/kg, Cd 2,230.1 mg/kg, respectively. Comparing the heavy metal content of both cyclone and bag filter, in cyclone, the Cr, Fe, Ni content were higher than in bag filter and the Cd, Cu, Hg content were lower than in bag filter.

Phase Equilibria of the Ferrous Ferrite System of $(Mg_{0.29}-yMnyFe_{0.71})_{3-}\delta$O_4$ ($(Mg_{0.29}-yMnyFe_{0.71})_{3-}\delta$O_4$ 훼라이트계의 상평형)

  • 채정훈;유한일;강선호;강대석;유병두
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.3
    • /
    • pp.394-402
    • /
    • 1995
  • Electrical conductivity and thermoelectric power of the ferrous ferrite system of (Mg0.29-yMnyFe0.71)3-$\delta$O4 have been measured as function of the thermodynamic variables, cationic composition(y), temperature(T) and oxygen partial pressure(Po2) under thermodynamic equilibrium conditions at elevated temperatures. On the basis of the electrical properties-phase stability correlation, the stability regions of the ferrite spinel and its neighboring phases have been subsequently located in the log Po2 vs. y and log Po2 vs. 1/T planes in the ranges of 0 y 0.29, 1100 T/$^{\circ}C$ 1400 and 10-14 Po2/atm 1. The stability region, Δlog Po2(y, 1/T), of the ferrite spinel single phase widens with increasing Mn-content(y) and the boundaries of each region are linear against 1/T with negative slopes.

  • PDF

The Phase Analysis of MgB2 Fabricated by Spark Plasma Sintering after Ball Milling (볼 밀링 후 방전플라즈마 소결법에 의해 제조된 MgB2의 상 분석)

  • Kang, Deuk-Kyun;Choi, Sung-Hyun;Ahn, In-Shup
    • Journal of Powder Materials
    • /
    • v.15 no.5
    • /
    • pp.371-377
    • /
    • 2008
  • This paper deals with the phase analysis of $MgB_2$ bulk using spark plasma sintering process after ball milling. Mg and amorphous B powders were used as raw materials, and milled by planetary-mill for 9 hours at argon atmosphere. In order to confirm formation of $MgB_2$ phase, DTA and XRD were used. The milled powders were fabricated to $MgB_2$ bulk at the various temperatures by Spark Plasma Sintering. The fabricated $MgB_2$ bulk was evaluated with XRD, EDS, FE-SEM and PPMS. In the DTA result, reaction on formation of $MgB_2$ phase started at $340^{\circ}C$. This means that ball milling process improves reactivity on formation of $MgB_2$ phase. The $MgB_2$ MgO and FeB phases were characterized from XRD result. MgO and FeB were undesirable phases which affect formation of $MgB_2$ phase, and it's distribution could be confirmed from EDS mapping result. Spark Plasma Sintered sample for 5 min at $700^{\circ}C$ was relatively densified and it's density and transition temperature showing super conducting property were $1.87\;g/cm^3$ and 21K.