DOI QR코드

DOI QR Code

Hydrogen Storage Properties of Hydriding-Dehydriding Cycled Magnesium-Nickel-Iron Oxide Alloy

  • Song, Myoung Youp (Division of Advanced Materials Engineering, Department of Hydrogen and Fuel Cells, Hydrogen & Fuel Cell Research Center, Engineering Research Institute, Chonbuk National University) ;
  • Kwon, Sung Nam (Department of Hydrogen and Fuel Cells, Chonbuk National University) ;
  • Park, Hye Ryoung (School of Applied Chemical Engineering, Chonnam National University) ;
  • Kim, Byoung-Goan (Korea Energy Materials)
  • Received : 2011.11.01
  • Published : 2012.02.25

Abstract

By measuring the absorbed hydrogen quantity as a function of the number of cycles, the cycling properties of the Mg-15 wt%Ni-5 wt%$Fe_2O_3$ alloy were investigated. The absorbed hydrogen quantity decreased as the number of cycles increased. The $H_a$ value varied almost linearly with the number of cycles. The maintainability of absorbed hydrogen quantity at n=100 was 89.0% for the hydriding reaction time of 10 min. After the $150^{th}$ hydriding-dehydriding cycle, Mg, $Mg_2Ni$, $Mg(OH)_2$, MgO, and Fe were observed. The phases were analyzed by Rietveld analysis from the XRD patterns of the Mg-15 wt%Ni-5 wt%$Fe_2O_3$ alloy after 150 hydriding-dehydriding cycles. The crystallite size and strain of Mg were then estimated with the Williamson-Hall technique.

Keywords

Acknowledgement

Supported by : Ministry of Science and Technology

References

  1. J. S. Han and K. D. Park, Korean J. Met. Mater. 48, 1123 (2010).
  2. K. I. Kim and T. W. Hong, Korean J. Met. Mater. 49, 264 (2011). https://doi.org/10.3365/KJMM.2011.49.3.264
  3. S. H. Hong, S. N. Kwon, and M. Y. Song, Korean J. Met. Mater. 49, 298 (2011). https://doi.org/10.3365/KJMM.2011.49.4.298
  4. A. Krozer and B. Kasemo, J. Phys.-Condens. Mat. 1, 1533 (1989). https://doi.org/10.1088/0953-8984/1/8/017
  5. F. Stillesjoe, S. Olafsson, B. Hjoervarsson, and E. Karlsson, Zeit. Phys. Chem. 181, 353 (1993). https://doi.org/10.1524/zpch.1993.181.Part_1_2.353
  6. J.-L. Bobet, E. Akiba, Y. Nakamura, and B. Darriet, Int. J. Hydrogen Energy 25, 987 (2000). https://doi.org/10.1016/S0360-3199(00)00002-1
  7. J. Huot, M. L. Tremblay, and R. Schulz, J. Alloys Compd. 356, 603 (2003).
  8. H. Imamura, M. Kusuhara, S. Minami, M. Matsumoto, K. Masanari, Y. Sakata, K. Itoh, and T. Fukunaga, Acta Mater. 51, 6407 (2003). https://doi.org/10.1016/j.actamat.2003.08.010
  9. W. Oelerich, T. Klassen, and R. Bormann, J. Alloys Compd. 322, L5 (2001). https://doi.org/10.1016/S0925-8388(01)01173-2
  10. Z. Dehouche, T. Klassen, W. Oelerich, J. Goyette, T. K. Bose, and R. Schulz, J. Alloys Compd. 347, 319 (2002). https://doi.org/10.1016/S0925-8388(02)00784-3
  11. G. Barkhordarian, T. Klassen, and R. Bormann, Scr. Mater. 49, 213 (2003). https://doi.org/10.1016/S1359-6462(03)00259-8
  12. G. Barkhordarian, T. Klassen, and R. Bormann, J. Alloys Compd. 407, 249 (2006). https://doi.org/10.1016/j.jallcom.2005.05.037
  13. O. Friedrichs, T. Klassen, J. C. Sanchez-Lopez, R. Bormann, and A. Fernandez, Scr. Mater. 54, 1293 (2006). https://doi.org/10.1016/j.scriptamat.2005.12.011
  14. O. Friedrichs, F. Aguey-Zinsou, J. R. Ares Fernandez, J. C. Sanchez-Lopez, A. Justo, T. Klassen, R. Bormann, and A. Fernandez, Acta Mater. 54, 105 (2006). https://doi.org/10.1016/j.actamat.2005.08.024
  15. K. F. Aguey-Zinsou, J. R. Ares Fernandez, T. Klassen, and R. Bormann, Mater. Res. Bull. 41, 1118 (2006). https://doi.org/10.1016/j.materresbull.2005.11.011
  16. R. Yavari, A. LeMoulec, F. R. deCastro, S. Deledda, O. Friedrichs, W. J. Botta, G. Vaughan, T. Klassen, A. Fernandez, and ${\AA}$. Kvick, Scr. Mater. 52, 719 (2005). https://doi.org/10.1016/j.scriptamat.2004.12.020
  17. B. Bogdanovic and B. Spliethoff, Int. J. Hydrogen Energy 12, 863 (1987). https://doi.org/10.1016/0360-3199(87)90108-X
  18. H. Imamura, N. Sakasai, and Y. Kajii, J. Alloys Comp. 232, 218 (1996). https://doi.org/10.1016/0925-8388(95)01882-4
  19. S. N. Kwon, H. S. Hong, H. R. Park, and M. Y. Song, Int. J. Hydrogen Energy 35, 13055 (2010). https://doi.org/10.1016/j.ijhydene.2010.04.068
  20. M. Y. Song, S. H. Baek, J.-L. Bobet, and S. H. Hong, Int. J. Hydrogen Energy 35, 10366 (2010). https://doi.org/10.1016/j.ijhydene.2010.07.161
  21. C. Suryanarayana and M. Grant Norton, X-ray Diffraction, A Practical Approach, p. 207-222, Plenum Press, New York (1998).
  22. M. Y. Song, M. Pezat, B. Darriet, and P. Hagenmuller, J. Mater. Sci. 20, 2958 (1985). https://doi.org/10.1007/BF00553060