Element Dispersion and Wallrock Alteration from Samgwang Deposit

삼광광상의 모암변질과 원소분산

  • Yoo, Bong-Chul (Department of Geology and Environmental Sciences, Chungnam National University) ;
  • Lee, Gil-Jae (Domestic & North Korea Mineral Resources Department, Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Jong-Kil (Metals Exploration Team, Exploration Department, Korea Resources Corporation) ;
  • Ji, Eun-Kyung (Department of Geology and Environmental Sciences, Chungnam National University) ;
  • Lee, Hyun-Koo (Department of Geology and Environmental Sciences, Chungnam National University)
  • 유봉철 (충남대학교 자연과학대학 지질환경과학과) ;
  • 이길재 (한국지질자원연구원 국내/북한자원연구실) ;
  • 이종길 (한국광물자원공사 탐사지원팀) ;
  • 지윤경 (충남대학교 자연과학대학 지질환경과학과) ;
  • 이현구 (충남대학교 자연과학대학 지질환경과학과)
  • Published : 2009.06.28

Abstract

The Samgwang deposit consists of eight massive mesothermal quartz veins that filled NE and NW-striking fractures along fault zones in Precambrian granitic gneiss of the Gyeonggi massif. The mineralogy and paragenesis of the veins allow two separate discrete mineralization episodes(stage I=quartz and calcite stage, stage II-calcite stage) to be recognized, temporally separated by a major faulting event. The ore minerals are contained within quartz and calcite associated with fracturing and healing of veins that occurred during both mineralization episodes. The hydrothermal alteration of stage I is sericitization, chloritization, carbonitization, pyritization, silicification and argillization. Sericitic zone occurs near and at quartz vein and include mainly sericite, quartz, and minor illite, carbonates and chlorite. Chloritic zone occurs far from quartz vein and is composed of mainly chlorite, quartz and minor sericite, carbonates and epidote. Fe/(Fe+Mg) ratios of sericite and chlorite range 0.45 to 0.50(0.48$\pm$0.02) and 0.74 to 0.81(0.77$\pm$0.03), and belong to muscovite-petzite series and brunsvigite, respectiveIy. Calculated $Al_{IV}$-FE/(FE+Mg) diagrams of sericite and chlorite suggest that this can be a reliable indicator of alteration temperature in Au-Ag deposits. Calculated activities of chlorite end member are $a3(Fe_5Al_2Si_3O_{10}(OH)_6$=0.0275${\sim}$0.0413, $a2(Mg_5Al_2Si_3O_{10}(OH)_6$=1.18E-10${\sim}$7.79E-7, $a1(Mg_6Si_4O_{10}(OH)_6$=4.92E-10${\sim}$9.29E-7. It suggest that chlorite from the Samgwang deposit is iron-rich chlorite formed due to decreasing temperature from high temperature(T>450$^{\circ}C$). Calculated ${\alpha}Na^+$, ${\alpha}K^+$, ${\alpha}Ca^{2+}$, ${\alpha}Mg^{2+}$ and pH values during wallrock alteration are 0.0476($400^{\circ}C$), 0.0863($350^{\circ}C$), 0.0154($400^{\circ}C$), 0.0231($350^{\circ}C$), 2.42E-11($400^{\circ}C$), 7.07E-10($350^{\circ}C$), 1.59E-12($400^{\circ}C$), 1.77E-11($350^{\circ}C$), 5.4${\sim}$6.4($400^{\circ}C$), 5.3${\sim}$5.7($350^{\circ}C$)respectively. Gain elements(enrichment elements) during wallrock alteration are $TiO_2$, $Fe_2O_3(T)$,CaO, MnO, MgO, As, Ag, Cu, Zn, Ni, Co, W, V, Br, Cs, Rb, Sc, Bi, Nb, Sb, Se, Sn and Lu. Elements(Ag, As, Zn, Sc, Sb, Rb, S, $CO_2$) represents a potential tools for exploration in mesothermal and epithermal gold-silver deposits.

삼광광상은 선캠브리아기 경기육괴의 화강편마암내에 발달된 단열대(NE, NW)를 따라 충진한 8개의 괴상맥으로 구성된 중열수 석영맥광상이다. 이 광상의 광화작용은 여러번의 단열작용에 의해 형성된 두시기의 석영+방해석시기(광화I시기)와 방해석시기(광화II시기)로 구성된다. 광화I시기의 열수작용에 의한 변질작용은 견운모화, 녹니석화, 탄산염화, 황철석화, 규화, 및 점토화작용등이 관찰되며 견운모대는 석영맥과 접촉한 부분에서 녹니석대는 석영맥으로부터 멀어짐에 따라 관찰된다. 견운모대의 모암변질광물은 대부분이 견운모 및 석영이며 일부 일라이트, 탄산염광물, 녹니석으로 구성된다. 녹니석대의 모암변질광물은 주로 녹니석, 석영과 소량 견운모, 탄산염광물 및 녹염석으로 구성된다. 견운모의 Fe/(Fe+Mg) 값은 0.45${\sim}$0.50(0.48$\pm$0.02)이며 백운모-펜자이트족에 해당되고 녹니석의 Fe/(Fe+Mg) 값은 0.74${\sim}$0.81(0.77$\pm$0.03)이고 대부분 브런스비자이트에 해당된다. 견운모와 녹니석에 대한 $Al_{IV}$-FE/(FE+Mg)의 다이어그램은 변질시 같은 광종의 견운모와 녹니석의 형성온도를 나타내는 지시자로써 유용하다. 이것은 계산된 녹니석 단종의 활동도가 $a3(Fe_5Al_2Si_3O_{10}(OH)_6$=0.0275${\sim}$0.0413, $a2(Mg_5Al_2Si_3O_{10}(OH)_6$=1.18E-10${\sim}$7.79E-7, $a1(Mg_6Si_4O_{10}(OH)_6$=4.92E-10${\sim}$9.29E-7로서 삼광광상의 녹니석은 iron-rich 녹니석으로 비교적 고온 (T>450$^{\circ}C$에서 모암과 평형상태에서 온도가 감소함에 따라 형성되었음을 알 수 있다. 모암변질시 ${\alpha}Na^+$, ${\alpha}K^+$, ${\alpha}Ca^{2+}$${\alpha}Mg^{2+}$는 각각 ${\alpha}Na^+$=0.0476($400^{\circ}C$), 0.0863($350^{\circ}C$), ${\alpha}K^+$=0.0154($400^{\circ}C$), 0.0231($350^{\circ}C$), ${\alpha}Ca^{2+}$=2.42E-11($400^{\circ}C$), 7.07E-10($350^{\circ}C$), ${\alpha}Mg^{2+}$=1.59E-12($400^{\circ}C$), 1.77E-11($350^{\circ}C$)이며 열수용액의 pH는 5.4${\sim}$6.4($400^{\circ}C$), 5.3${\sim}$5.7($350^{\circ}C$)로서 모암변질시 열수용액는 약산성이었음을 알 수 있다. 모암변질시 이득원소(부화원소)는 $TiO_2$, $Fe_2O_3(T)$,CaO, MnO, MgO, As, Ag, Cu, Zn, Ni, Co, W, V, Br, Cs, Rb, Sc, Bi, Nb, Sb, Se, Sn 및 Lu 등이며 특히 대부분의 광상에서 Ag, As, Zn, Sc, Sb, S,$CO_2$ 등의 원소가 현저하게 증가하므로 중열수 및 천열수 금-은광상의 탐사에 지시원소로서 활용될 수 있을 것이다.

Keywords

References

  1. Arnorsson, S., Sigurdsson, S. and Svarvarsson, H. (1982) The chemistry of geothermal waters in Iceland. I. Calculation of aqueous speciation from $0^{\circ}$ to $370^{\circ}C$. Geochimica et Cosmochimica Acta, v. 46, p. 1513-1532 https://doi.org/10.1016/0016-7037(82)90311-8
  2. Berman, R.G. (1988) Internally-consistent thermodynamic data for minerals in the system $Na_2O-K_2O-CaOMgO-FeO-Fe_2O_3-Al_2O_3-SiO_2-TiO_2-H_2O-CO_2$. Journal of Petrology, v. 29, p. 445-522 https://doi.org/10.1093/petrology/29.2.445
  3. Chang, S.W. (1988) Mineralogy of tungsten ores from Sangdong mine. Ph.D. thesis, Seoul National University, 287p
  4. De Caritat, P., Hutcheon, I. and walshe, J.L. (1993) chlorite geothermometry: A review. Clays and Clay Minerals, v. 41, p. 219-239 https://doi.org/10.1346/CCMN.1993.0410210
  5. Garrels, R.M. and Christ, C.L. (1965) Solutions, minerals and equilibria. Freeman, Cooper and Company, 450p
  6. Grant, J.A. (1986) The isocon diagram-A simple solution to Gresens' equation for metasomatic alteration. Economic Geology, v. 81, p. 1976-1982 https://doi.org/10.2113/gsecongeo.81.8.1976
  7. Gresens, R.L. (1967) Composition-volume relationships of metasomatism. Chemical Geology, v. 2, p. 47-65 https://doi.org/10.1016/0009-2541(67)90004-6
  8. Helgeson, H.C. (1969) Thermodynamics of hydrothermal systems at elevated temperatures and pressures. American Journal of Science, v. 267, p. 729-804 https://doi.org/10.2475/ajs.267.7.729
  9. Helgeson, H.C., Delany, J.M., Nesbitt, H.W. and Bird, D.K. (1978) Summary and critique of the thermodynamic properties of rock forming minerals. American Journal of Science, v. 278-A, 229p
  10. Helgeson, H.C. and Kirkham, D.H. (1978) Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures. II. Debye-Huckel parameters for activity coefficients and relative partial molal properties. American Journal of Science, v. 274, p. 1199-1261 https://doi.org/10.2475/ajs.274.10.1199
  11. Helgeson, H.C. and Kirkham, D.H. (1974) Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures. II. Debye-Huckel parameters for activity coefficients and relative partial molal properties. American Journal of Science, v. 274, p. 1199-1261 https://doi.org/10.2475/ajs.274.10.1199
  12. Hey, M.H. (1954) A new review of the chlorites. Mineralogical Magazine, v. 3, p. 87-102
  13. Hofmann, A. (1972) Chromatographic theory of infiltration metasomatism and its application to feldspar. American Journal of Sciences, v. 272, p. 69-90
  14. Jiang, W.T., Peacor, D.R. and Buseck, P.R. (1994) Chlorite geothermometry-contamination and apparent octahedral vacancies. Clays and Clay Minerals, v. 42, p. 593-605 https://doi.org/10.1346/CCMN.1994.0420512
  15. Kang, P.S. and Im, P.S. (1974) Geological map of Kwangjung sheet. Geological Survey of Korea
  16. Kim, S.S., Choi, S.G., Choi, S.H. and Lee, I.W. (2002) Hydrothermal alteration and its genetic implication in the Gasado volcanic-hosted epithermal gold-silver deposit: Use in exploration. Journal of Mineralogical Society of Korea. v. 15, p. 205-220
  17. Kranidiotis, P. and MacLean, W.H. (1987) Systematics of chlorite alteration at the Phelps Dodge massive sulfide deposit. Matagami, Quebec. Economic geology, v. 82, p. 1898-1911 https://doi.org/10.2113/gsecongeo.82.7.1898
  18. Lee, C.H., Lee, H.K., Yoo, B.C. and Cho, A. (1998b) Geochemical enrichment and migration of environmental toxic elements in stream sediments and soils from the Samkwang Au-Ag mine area, Korea. Economic and Environmental Geology, v. 31, p. 111-125
  19. Lee, C.H. (1993) Geology, mineralogy, fluid inclusion and stable isotope of gold, silver and antimony ore deposits of the Dunjeon-Baegjon area, northern Taebaegsan mningdistrict, Korea. Ph.D. thesis, Seoul National University, 422p
  20. Lee, J.H. (1992) Hydrothermal copper mineralization in the Goseong district, Korea. Ph.D. thesis, Korea University, 177p
  21. Lee, J.H. and Hueley, P.M. (1973) U-Pb zircon age of the Precambrian basement gneisses of South Korea. Geology and ore deposit No.21, Geological and mineral institute of Korea, p.5-7.
  22. Lee, H.K., Yoo, B.C., Kim, K.W. and Choi, S.G. (1998a) Mode of occurrence and chemical composition of electrums from the Samkwang gold-silcer deposits, Korea. Journal of the Korean Institute of Mineral and Energy Resource Engineers, v. 35, p. 8-18
  23. Lee, H.K. and Lee, C.H. (1997) Mineralogy and geochemistry of green-colored Cr-bearing sericite from hydrothermal alteration zone of the Narim gold deposit, Korea. Economic and Environmental Geology, v. 30, p. 279-288 https://doi.org/10.1016/S0168-6178(97)80043-2
  24. Lee, H.K., Yoo, B.C., Hong, D.P. and Kim, K.W. (1995) Structural constraints on gold-silver-bearing quartz mineralization in strike-slip fault system, Samkwang mine, Korea. Economic and Environmental Geology, v. 28, p. 579-585
  25. Neall, F.B. and Phillips, G.N. (1987) Fluid-wallrock interaction in an Archean hydrothermal gold deposit: A thermodynamic model for the Hunt mine, Kambalda. Economic Geology, v. 82, p. 1679-1694 https://doi.org/10.2113/gsecongeo.82.7.1679
  26. Ohta, E. and Yajima, J. (1988) Magnesium to iron ratio of chlorite as indicater of type of hydrothermal ore deposit. Mining Geology Special Issue, p. 17-22
  27. Park, S.J., Choi, S.G. and Lee, D.E. (2003) The genetic implication of hydrothermal alteration of epithermal deposits from the Mugeuk area. Journal of Mineralogical Society of Korea. v. 16, p. 265-280
  28. Robert, F., Poulsen, K.H. and Dube, B. (1997) Gold deposits and their geological classification. Exploration 97, April 1997, Toronto, Canada, p. 209-219
  29. Rose, A.W. and Burt, D.M. (1979) Hydrothermal alteration: In geochemistry of hydrothermal ore deposits, 2nd ed., Wiley-Interscience, p. 173-235
  30. Shelton, K.L., So, S.C. and Chang, J.S. (1988) Gold-rich mesothermal vein deposits of the Republic of Korea: Geochemical studies of the Jungwon gold area. Economic Geology, v. 83, p. 1221-1237 https://doi.org/10.2113/gsecongeo.83.6.1221
  31. So, C.S., Shelton, K.L., Chi S.J., and Choi, S.H. (1988) Stable isotope and fluid inclusion studies of goldsilver-bearing hydrothermal vein deposits, Cheonan-Cheongyang-Nonsan mining district, Republic of Korea: Cheongyang area. Journal of Korean Institute of Mining Geology, v. 21, p. 149-164
  32. Um, S.H. and Lee, M.S. (1963) Geological map of Taehung sheet. Geological Survey of Korea
  33. Walshe, J.L. (1986) A six-component chlorite solid solution model and the conditions of chlorite formation in hydrothermal and geothermal system. Economic Geology, v. 81, p. 687-703
  34. Walshe, J.L. and Solomon, M. (1981) An investigation into the environment of formation of the volcanichosted Mt. Lyell copper deposits, using geology, mineralogy, stable isotopes, and a six-component chlorite solid solution model. Economic Geology, v. 76, p. 246-284 https://doi.org/10.2113/gsecongeo.76.2.246
  35. Woo, Y.K., Choi, S.W. and Park, K.H. (1991) Genesis of talc ore deposits in the Yesan area of Chungnam, Korea. The Journal of the Korean Institute of Mining Geology, v. 24, p. 363-378
  36. Yang, D.Y. (1991) Mineralogy, petrology and geochemistry of the magnesian skarn-type magnetite deposits at the Shinyemi mine, Republic of Korea. Ph.D. thesis, Waseda University, 323p
  37. Yoo, B.C., Chi, S.J., Lee, G.J., Lee, J.K. and Lee, H.K. (2007) Element dispersion and wall-rock alteration from Daebong gold-silver deposit, Republic of Korea. Economic and Environmental Geology, v. 40, p. 713-726
  38. Yoo, B.C., Lee, H.K. and Choi, S.G. (2002) Stable isotope, fluid Inclusion and mineralogical studies of the Samkwang gold-silver deposits, Republic of Korea. Economic and Environmental Geology, v. 35, p. 299-316
  39. Yoo, B.C., Lee, H.K. and Kim, S.J. (2003) Stable isotope and fluid inclusion studies of the Daebong gold-silver deposits, Republic of Korea. Economic and Environmental Geology, v. 36, p. 391-405
  40. Yun, S.P., Moon, H.S. and Song, Y.G. (1994) Mineralogy and genesis of the Pyoungan and Daeheung talc deposits in ultramafic rocks, the Yoogoo area, Republic of Korea. Economic and Environmental Geology, v. 27, p.131-145