Natural Background and Enrichment Characteristics of the Stream Sediments from the Hamyang-Sancheong Area

함양-산청지역 하상퇴적물의 자연배경치 및 부화특성

  • Published : 2009.06.28

Abstract

We investigated natural background and enrichment characteristics and predicted geochemical disaster for stream sediments in the Hamyang-Sancheong area. Stream sediments samples were collected 95 ea in study area. The stream sediments were well known that had not possibility of contamination effect and represented drainage basins. We got the major and hazardous elements concentrations by XRF, ICP-AES and NAA analysis methods. Acid decomposition for the ICP-AES has been used $HClO_4$ and HF with $200^{\circ}C$ heating at 1st and after that $HClO_4$ HF and HCl with $200^{\circ}C$ heating at 2nd stage. We could know the characteristics that concentration of Cu and Co decreased when concentration of $SiO_2$ increased in correlation analysis. The enrichment factor of the stream sediments was below 2 in study area. This result indicated that study area belonged to moderate enrichment. The stream sediments of Hamyang area were enriched in order of Pb>Th>Cr>V>Co>Cu and those of Sancheong area were enriched in order of Pb>Th>Cr>Co>V>Cu. The enrichment factor(E.F.) of the Pb, Cr, Co and V was similar between Hamyang and Sancheong area. The enrichment factor of the Th was higher in Hamyang area and that of the Cu was higher in Sancheong area. The enrichment factor of the Pb was highly enriched in all study area than earth crust mean. But we could know that study area was not exposed to the pollution of the Pb through the tolerable level.

함양-산청지역 하상퇴적물의 자연배경치와 부화특성을 알아보고, 지구화학적 재해에 대해 예견하였다. 오염의 우려가 없고, 집수분지를 대표할 수 있는 하상퇴적물 시료를 채취하였다. XRF, ICP-AES와 NAA 분석을 이용하여 주성분원소와 유해원소 함량을 얻었다. 산분해법은 1차로 $HClO_4$와 HF를 혼합하여 $200^{\circ}C$에서 분해시킨 후, 2차로 $HClO_4$, HF 및 HCl를 혼합한 후 $200^{\circ}C$에서 분해시켜 이를 1% $HNO_3$용액으로 만들었다. 상관분석에서 하상퇴적물의 $SiO_2$ 함량이 증가할수록 Cu와 Co의 함량이 감소하는 특징을 보임을 알 수 있었다. 함양-산청내 환경유해원소 대부분 부화지수 2 이하로 부화되어 있었으며, 함양지역 하상퇴적물은 Pb>Th>Cr>V>Co>Cu순으로, 산청지역 하상퇴적물은 Pb>Th>Cr>Co>V>Cu순으로 부화되어 있었다. Pb, Cr, Co 및 V의 부화지수는 함양지역과 산청지역에서 거의 비슷한 부화특성을 보였으나, Th의 부화지수는 함양지역 지역에서, Cu의 부화지수는 산청지역에서 높은 부화특성을 보였다. Pb의 부화지수는 각각 2.24(함양), 2.57(산청) 이상으로 부화되어 있었지만, 토양 및 환경오염 허용 한계치(tolerable level)를 이용하여 살펴본 결과에서는 오염에 특별히 노출되지 않은 것으로 판단된다.

Keywords

References

  1. ATSDR(Agency for Toxic Substances and Disease Registry). (1988~1995) Pubiic Health Statement; http://atsdr1.atsdr.cdc.gov:8080/ToxProfiles., ToxFAQs; http://atsdr1.atsdr.cdc.gov:8080/ToxFAQs/
  2. Bruladn, K.W., Bertine, K., Koiole, M. and Goldberg, E.D. (1974) History of metal pollution in Southern Califormia coastal zone. Environ. Sci. Tech., v.8, p. 425-432 https://doi.org/10.1021/es60090a010
  3. Darnley, A.G., Bjorklund, A., Bolviken, B., Gustavsson, N., Koval, P.V., Plant, K.A., Steenfelt, A., Tauchid, M., Xie Xuejing, Garrett, R.G. and Hall, G.E.M. (1995) A global geochemical database for environmental and resource management-recommendations for International geochemical mapping. Final Report of IGCP Project 259, Earth
  4. Davis, B.D. and Ballinger, R.C. (1990) Heavy metal soils in north Somerest. England. with special reference to contamination from base metal mining in the Mendips. Environ Geochem Health., v.12, p. 291-30 https://doi.org/10.1007/BF01783454
  5. Hwang, C.K., Kim, K.Y. and Lee, H.K. (1999) Investigation of trace element contamination in stream sediments in the Chungnam Coal Mine Area Using geostatistical approch. Econ. Environ. Geol., v.32(1), p. 63-72
  6. Kabata-Pendias, A. and Pendias, H. (1984) Trace elements in soil and plants. CRC Press INC, 315p
  7. Kim, K.B. and Chwae, U.C. (1994) Geologial report of the Hamyang sheet. Korea Institute Geology., p. 1-4
  8. Kim, O.J., Hong, M.S., Park, H.I., Park, Y.D., Kim, K.T. and Yoon, S. (1964) Geological map of Korea: Sancheong sheet. Kyeong-sang namdo, Korea., p. 1-4
  9. Lee, H.K., Cho, A.R. and Lee, C.H. (1999) Geochemical dispersion and enrichment of fluvial sediments depending on the particle size distribution. Econ. Environ. Geol., v.32(3), p. 247-260
  10. Lee, S.G., Yang, D.Y., Hong, S.S., Kwak, J.H. and Cho, K.C. (2003) Provenance of the Seomjin River sediments of the Sunchang area based on the rare earth elements geochemistry. Journal of the Geological Society of Korea., v.39(1), p. 81-97
  11. Levinson, A.A. (1974) Introduction to Exploration Geochemistry. Applied Publishing Ltd, Maywood, 614p
  12. Mason, B and Moore, C.B. (1982) Principles of geochemistry. John Wiley and Sons Inc. New York
  13. Park, Y.S., Jang, W.S. and Kim, J.K. (2003) The study of natural background of geologic units for stream sediments in the Gurye area. Econ. Environ. Geol., v.36(4), p. 275-284
  14. Park, Y.S., Kim, J.K., Han, M.S., Kim, Y.J., Jang, W.S. and Shin, C.S. (2002) Geochemical charac-teristics on the petrological groups of stream sediments and water in primary channels of the Jangheung area. Korea. Econ. Environ. Geol., v.35(6), p. 509-521
  15. Rose, A.W., Hawkes, H.E. and Webb, J.S. (1979) Geochemistry in mineral exploration. 2nd(ed.), Academic Press, 657p
  16. Sin, S.C., Youm, S.J., Jin, M.S., Kim, Y.K., Yun, U., Im, H.C., Park, D.W., Kim, Y.U., Hong, Y.K., Kim, D.O., Min, C.K., Yang, M.K., Kim, K.H., Sim, S.K., Park, J.T., Lee, K.Y., Yoon, Y.Y., Cheon, S.K., Song, D,Y., Choi, B.I., Kim, S.Y., Eum, C.H. and An, S.H. (2007) Geochemical Atlas of Sourthern Gyeongsang Province Korea: Geochemical Atlas of Korea(1:700,000), Korea Institute of Geoscience and Mineral Resources, 85p
  17. Sutherland, R.A. (2000) A comparison of geochemical information obtained from two fluvial bed sediment fractions. Environmental Geology., v.39, p. 330-341 https://doi.org/10.1007/s002540050012
  18. Taylor, S.R. (1964) Abundance of chemical elements in the continental crust: a new table. Geochim. Cosmochim. Acta., v.28, p. 1273-1285 https://doi.org/10.1016/0016-7037(64)90129-2
  19. Taylor, S.R. and McLennan, S.M. (1985) The Continental Crust: Its Composition and Envolution. Blackwell Scientific Publ, Oxford, England, 312p
  20. Taylor, S.R. and McLennan, S.M., (1995) The geochemical evolution of the continental crust. Rev. Geophys., v.33, p. 241-265 https://doi.org/10.1029/95RG00262
  21. Teixeria, E.C., Ortix, L.S., Alves, M.F.C.C. and Sanchez, J.C.D. (2001) Distribution of selected heavy metals in fluvial sediments of the coal mining region of Baixo Jacui. RS. Brazil. Environmental Geology., v.41, p. 145-154 https://doi.org/10.1007/s002540100257
  22. Thornton, I. (1983) Applied environmental geochemistry. Academic Press, 501p
  23. Turekian, K.K. and Wedephol, K.H. (1961) Distribution of the elements in some major units of the Earth's crust. Geol. Soc. America Bull., v.72, p. 175-192 https://doi.org/10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2
  24. UNESCO. (1990) Geological map of the world.(Scale 1:25,000,000; edited by O.Dottin.) Commission for the geological Map of the World. United Nations Educational. Scientific and Cultural Organization., Paris
  25. Wager, L.A. and Mitchell, R.L. (1951) The distribution of trace elements during strong fractionation of basic magma. Geochim. Cosmo. Acta., v.1, p. 1-27 https://doi.org/10.1016/0016-7037(50)90002-0
  26. Youm, S.J., Lee, P.K., Kang, M.J., Shin S.C. and Yu, Y.H. (2004) Contamination level and behavior of heavy metals in stream sediments within the watershed of Juam Reservoir. Econ. Environ. Geol., v.37(3), p. 311-324