DOI QR코드

DOI QR Code

A feasibility of coagulation as post-treatment of the anaerobic fluidized bed reactor (AFBR) treating domestic wastewater

도시하수 처리 혐기성 유동상 반응조의 후속공정으로서 화학응집의 가능성 평가

  • Yang, Seung Yong (Department of Environmental Engineering, Inha University) ;
  • Bae, Jae Ho (Department of Environmental Engineering, Inha University)
  • Received : 2014.07.07
  • Accepted : 2014.12.10
  • Published : 2014.12.15

Abstract

This study examined a feasibility of coagulation as post-treatment to remove sulfide and phosphorus for the effluent of anaerobic fluidized bed reactor (AFBR) treating domestic wastewater. Removal efficiencies of sulfide, phosphorus and COD by coagulation were not affected by pH in the range of 5.9 to 7.2. Alkalinity requirement could be estimated by the amount of $Fe^{3+}$ to form $Fe(OH)_{3(S)}$ and to remove sulfide and phosphorus. At coagulant aid dosage of 2 mg/L, anionic polymer showed best results regarding size and settleability of flocs. Sulfide removal for the AFBR effluent at the $Fe^{3+}/S^{2-}$ ratio of 0.64, close to the theoretical value of 0.67 found with a synthetic wastewater, was only 75.2%. One of the reasons for this high $Fe^{3+}/S^{2-}$ ratio requirement is that the AFBR effluent contains sulfide, phosphorus, hydroxide and bicarbonate which can react with $Fe^{3+}$ competitively. Concentrations of sulfide and phosphorous reduced to below 0.1 and 0.5 mg/L, respectively, at the $Fe^{3+}/S^{2-}$ ratio of 2.0. Average effluent COD of 80 mg/L, mostly soluble COD, was obtained at the dosage 50 mg $Fe^{3+}/L$ ($Fe^{3+}/S^{2-}$ ratio of 2.0) with corresponding COD removal of 55%. For better removal of COD, soluble COD removal at the AFBR should be enhanced. Coagulation with $Fe^{3+}$ removed sulfide, phosphorus and COD simultaneously in the AFBR effluent, and thus could be an alternative process for the conventional wastewater treatment processes where relatively high quality effluent is not required.

본 연구는 도시하수를 처리하는 혐기성 유동상 반응조(AFBR)의 유출수 내에 존재하는 황화물, 인을 제거하기 위한 후속 공정으로서 화학응집의 가능성을 평가하였다. pH 범위 5.9에서 7.2까지는 화학응집을 통한 황화물, 인 및 COD의 제거율에 큰 영향을 주지 않았다. 알칼리도의 요구량은 $Fe(OH)_3$를 형성 및 황화물과 인을 제거하기 위한 $Fe^{3+}$의 양을 통해 추정한다. 응집보조제 농도 2 mg/L에서 음이온성 폴리머는 플록의 크기와 침전성 면에서 가장 좋은 결과를 보였다. AFBR 유출수의 황화물을 제거하기 위해 투입한 응집제 주입비($Fe^{3+}/S^{2-}$)는 0.64로 인공폐수 실험을 통해 확인한 이론적인 응집제 주입비 0.67에 가까우나 황화물 제거율은 75.2%에 그쳤다. 이렇게 높은 응집제 주입비를 요구하는 이유는 인공폐수와는 다르게 AFBR 유출수에는 황화물, 인, 수산화이온, 중탄산염이 존재하고 $Fe^{3+}$와 경쟁적으로 반응하기 때문이다. 응집제 주입비 2.0에서 황화물과 인의 농도는 각각 0.1, 0.5 mg/L 이하로 감소했다. 응집제 주입량 50 mg $Fe^{3+}/L$에서 평균적인 유출수의 COD 농도는 80 mg/L로 대부분 용존성 COD로 구성되어 있고 제거율은 55%이다. 더 높은 COD 제거율을 얻기 위해서는 AFBR에서의 용존성 COD 제거율을 강화해야 한다. $Fe^{3+}$를 이용한 화학응집은 AFBR 유출수 내의 황화물, 인 및 COD를 동시에 제거할 수 있고, 이는 상대적으로 높은 처리수 수질을 요구하지 않는 나라의 기존 하수처리 공정을 대체할 수 있을 것이다.

Keywords

References

  1. APHA. (1998). In: Clesceri, L.S., Greenberge, A.E., Eaton, A.D. (Eds.), Standard Methods for Examination of Water and Wastewater, 20th ed. American Public Health Association, Washington, DC.
  2. Aiyuk, S., Amoako, J., Raskin, L., Haandel, A.V. and Verstraete, W. (2004). Removal of Carbon and Nutrients from Domestic Wastewater Using a Low Investment, Integrated Treatment Concept, Water Research, 38, pp. 3031-3042. https://doi.org/10.1016/j.watres.2004.04.040
  3. Berube , P.R., Hall, E.R. and Sutton, P.M. (2006). Parameters Governing Permeate Flux in an Anaerobic Membrane Bioreactor Treating Low-strength Municipal Wastewaters: A Literature Review, Water Environment Research, 78, pp. 887-896. https://doi.org/10.2175/106143005X72858
  4. Chan, Y.J., Chong, M.F., Law, C.L. and Hassell, D.G. (2009). A Review on Anaerobic-Aerobic Treatment of Industrial and Municipal Wastewater, Chemical Engineering Journal and the Biochemical Engineering Journal, 155 , pp. 1-18.
  5. Davydov, A., Chuang, K.T. and Sanger, A.R. (1998). Mechanism of H2S Oxidation by Ferric Oxide and Hydroxide Surfaces, Journal of Physical Chemistry B, 102, pp. 45-52. https://doi.org/10.1021/jp972716v
  6. De Oliv eira, L.L., Costa, R.B., Okada, D.Y., Vich, D.V., Duarte, I.C.S., Silva, E.L. and Varesche, M.B.A. (2010). Anaerobic Degradation of Linear Alkylbenzene Sulfonate (LAS) in Fluidized Bed Reactor by Microbial Consortia in Different Support Materials, Bioresource Technology, 101, pp. 5112-5122. https://doi.org/10.1016/j.biortech.2010.01.141
  7. Diamad opoulos, E., Megalou, K., Gerogiou, M. and Gizgis, N. (2007). Coagulation and Precipitation as Post-treatment of Anaerobically Treated Primary Municipal Wastewater, Water Environment Research, 79, pp. 131-139. https://doi.org/10.2175/106143006X101962
  8. Dold, B. (2010). Basic Concepts in Environmental Geochemistry of Sulfidic Mine-Waste Management, Waste Management, Kumar, E. S. (Ed.), ISBN: 978-953-7619-84-8, InTech, Available from:http://www.intechopen.com/books/waste-management/basic-concepts-in-environmental-geochemistry-ofsulfidic-minewaste-management
  9. Firer, D., Friedler, E. and Lahav, O. (2008). Control of Sulfide in Sewer Systems by Dosage of Iron Salts : Comparison Between Theoretical and Experimental Results, and Practical Implications, Science of the Total Environment, 392, pp. 145-156. https://doi.org/10.1016/j.scitotenv.2007.11.008
  10. Gabelm an, A. and Hwang, S.T. (1999). Hollow Fiber Membrane Contactors, Journal of Membrane Science, 159, pp. 61-106. https://doi.org/10.1016/S0376-7388(99)00040-X
  11. Gomec , C.Y. (2010). High-rate Anaerobic Treatment of Domestic Wastewater at Ambient Operating Temperatures: a Review on Benefits and Drawbacks, Journal of Environmental Science and Health, Part A:Toxic/Hazardous Substances & Environmental Engineering, 45, pp. 1169-1184.. https://doi.org/10.1080/10934529.2010.493774
  12. Gutierrez, O., Park, D., Sharma, K.R. and Yuan, Z. (2010). Iron Salts Dosage for Sulfide Control in Sewers Induces Chemical Phosphorus Removal during Wastewater Treatment, Water Research, 44, pp. 3467-3475. https://doi.org/10.1016/j.watres.2010.03.023
  13. Ge, H., Zhang, L., Batstone, D.J., Keller, J. and Yuan, Z. (2012). Impact of Iron Salt Dosage to Sewers on Downstream Anaerobic Sludge Digesters: Sulfide Control and Methane Production, Journal of Environmental Engineering, 139, pp. 594-601.
  14. Kalogo, Y. and Verstraete, W. (2000). Technical Feasibility of the Treatment of Domestic Wastewater by a CEPS-UASB System, Environmental Technology, 21, pp. 55-65. https://doi.org/10.1080/09593332108618138
  15. Kim, J., Kim, K., Ye, H., Lee, E., Shin, C., Mc-Carty P.L. and Bae, J. (2011). Anaerobic Fluidized Bed Membrane Bioreactor for Wastewater Treatment, Environmental Science & Technology, 45, pp. 576-581. https://doi.org/10.1021/es1027103
  16. Liao, B. Q., Kraemer, J. T. and Bagley, D. M. (2006). Anaerobic Membrane Bioreactors: Applications and Research Directions, Critical Reviews in Environmental Science & Technology, 36 , pp. 489-530. https://doi.org/10.1080/10643380600678146
  17. McCarty, P.L. and Smith, D.P. (1986). Anaerobic Wastewater Treatment Fourth of a Six-part Series on Wastewater Treatment Process, Environmental Science & Technology, 20, pp. 1200-1206. https://doi.org/10.1021/es00154a002
  18. Mohammad, R.H.P., Sanjoy, K.B., and Mingbo, Q. (1995). Effects of Nitrophenols on Acetate Utilizing Methanogenic Systems, Water Research, 29, pp. 391-399. https://doi.org/10.1016/0043-1354(94)00193-B
  19. Nielsen, A.H., Lens, P., Vollertsen, J. and Hvitved-Jacobsen, T. (2005). Sulfideiron Interactions in Domestic Wastewater from a Gravity Sewer, Water Research, 39, pp. 2747-2755. https://doi.org/10.1016/j.watres.2005.04.048
  20. Nielsen, P.H. and Keiding, K. (1998). Disintegration of Activated Sludge Flocs in Presence of Sulfide, Water Research, 32, pp. 313-320. https://doi.org/10.1016/S0043-1354(97)00235-2
  21. Sarparastzadeh, H., Saeedi, M., Naeimpoor, F. and Aminzadeh, B. (2007). Pretreatment of Municipal Wastewater by Enhanced Chemical Coagulation, Public Health International Journal of Environmental Research and Public Health, 1, pp. 104-113.
  22. Shin, C., Lee, E., McCarty, P.L. and Bae J. (2011). Effects of Influent DO/COD Ratio on the Performance of an Anaerobic Fluidized Bed Reactor Fed Low-strength Synthetic Wastewater, Bioresource Technology, 102, pp. 9860-9865. https://doi.org/10.1016/j.biortech.2011.07.109
  23. Shin, C., Kim, J., McCarty, P.L. and Bae, J. (2014). Pilot-scale Temperate-climate Treatment of Domestic Wastewater with a Staged Anaerobic Fluidized Membrane Bioreactor(SAF-MBR), Bioresource Technology, 159, pp. 95-103. https://doi.org/10.1016/j.biortech.2014.02.060
  24. Smith, A.L., Skerlos, S.J. and Raskin, L. (2013). Psychrophilic Anaerobic Membrane Bioreactor Treatment of Domestic Wastewater, Water Research, 47, pp. 1655-1665. https://doi.org/10.1016/j.watres.2012.12.028
  25. Wooding, A.R., Kavale, S., MacRitchie, F., Stoddard, F.L. and Wallac, A. (2000). Effects of Nitrogen and Sulfur Fertilizer on Protein Composition, Mixing Requirements, and Dough Strength of Four wheat Cultivars, Cereal chemistry, 77, pp. 798-807. https://doi.org/10.1094/CCHEM.2000.77.6.798
  26. Yoo, R., Kim, J., McCarty P.L. and Bae, J. (2012). Anaerobic Treatment of Municipal Wastewater with a Staged Anaerobic Fluidized Membrane Bioreactor (SAF-MBR) System, Bioresource Technology, 120, pp. 133-139. https://doi.org/10.1016/j.biortech.2012.06.028
  27. Zhang, T., Ding, L., Ren, H., Guo, Z. and Tan, J. (2010). Thermodynamic Modeling of Ferric Phosphate Precipitation for Phosphorus Removal and Recovery from Wastewater, Journal of Hazardous materials, 176, pp. 444-450. https://doi.org/10.1016/j.jhazmat.2009.11.049
  28. Zhao, D. and Sengupta, A.K. (1998). Ultimate Removal of Phosphate from Wastewater Using a New Class of Polymeric ion Exchangers, Water Research, 32, pp. 1613-1625 https://doi.org/10.1016/S0043-1354(97)00371-0

Cited by

  1. Effects of FeCl3 addition on the operation of a staged anaerobic fluidized membrane bioreactor (SAF-MBR) vol.74, pp.1, 2014, https://doi.org/10.2166/wst.2016.186