• Title/Summary/Keyword: Metal-oxide interface

Search Result 214, Processing Time 0.03 seconds

SHEAR BOND STRENGTH OF PORCELAIN REPAIR RESINS TO NONPRECIOUS CERAMO-METAL ALLOY (도재소부전장관 파절시 비귀금속과 도재수리용 레진간의 결합력에 관한 실험적 연구)

  • Ann, Joon-Young;Bae, Jung-Soo;Han, Dong-Hoo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.2
    • /
    • pp.195-209
    • /
    • 1991
  • When the porcelain fused to metal restorations were fractured at the metal interface, various techniques and materials for intraoral porcelain repair have been suggested. The purpose of this study was to investigate the effect of metal surface treatment method and water storage on the shear bond strength of four porcelain repair systems. : Clearfil(Kuraray), All-bond(Bisco), Superbond C & B(Sun Medical), Panavia OP(Kuraray). After the metal surfaces of the specimens were sandblasted by aluminum oxide or roughened by diamond point, they were stored in double deionized water(24 Hr., $37^{\circ}C$) and thermocycling was performed(24 Hr., 1024 cycles), and again half of specimes were stored in water bath(2 Months, $37^{\circ}C$). Mean shear bond strength and mode of failure were recorded. The results of this study were obtained as follows : 1. Differences were observed between the sandblasted and diamond - treated specimens in Clearfil, All-bond, and Superbond. No statistically significant differences were observed in Panavia. 2. The 2-month storage time significantly affected the bond strength of All-bond and Superbond. No statistically significant differences were observed in Clearfil and Panavia. 3. The failures were observed at the interface between opaque resin and the metal in Clearfil and All-bond. 4. The failures were observed at the interface between opaque resin and veneered resin in Panavia. The failures were observed at the interface between opaque resin and veneered resin in Superbond, but 40% of them were fractured at the interface between the metal and opaque resin after 2-month storage time.

  • PDF

A Study on the Metal to Zirconia Joining by Applying Direct Current (직류전원부하에 의한 지르코니아와 금속의 접합)

  • Kim Sung Jin;Kim Moon Hyop;Park Sung Bum;Gwon Won Il
    • 한국전기화학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.383-390
    • /
    • 2005
  • Effect of applying a DC voltage on the interfacial reaction at the metal to zirconia interface was investigated utilizing an oxygen ionic conductivity of partially stabilized zirconia. The joining of copper rod and zirconia tube was carried out in Ar gas atmosphere at $1000^{\circ}C$. There are two type of the joining. The one is the reaction bond consisting of copper and zirconia was dominated by surface reaction with a undetectable very thin layer. It was found that copper elements were diffused to zirconia side, but that Zr ions were not diffused to copper side. These results mean application of a DC voltage to migrate oxygen to the copper-zirconia interface can oxidize metal at the copper-zirconia interface and the bonding reaction between zirconia and copper oxide may occur. The other is the reaction bonding was dominated by interdiffusion with a very thick interface layer. This result mean application of a DC voltage can reduce zirconia at the interface. The bonding reaction is to be an alloying between Zr and Cu.

  • PDF

Metal-Mold Reaction and Surface Roughness Measurement of Pure Titanium Casting Specimens with Mold Temperatures (순수 티타늄 주조체의 주형온도에 따른 용탕반응성 및 표면거칠기)

  • Cha, Sung-Soo;Song, Young-Ju;Park, Soo-Chul
    • Journal of Technologic Dentistry
    • /
    • v.32 no.4
    • /
    • pp.297-305
    • /
    • 2010
  • Purpose: The purpose of this study was to observe the change of metal-mold reaction and surface roughness in titanium casting specimens for phosphate-silica alumina bonded investment with mold temperatures. Methods: The metal-phosphate silica alumina bonded mold interface reaction and surface roughness of titanium casting specimens according to mold temperatures were investigated. The Specimens were analysed by scanning electron microscopy and surface roughness tester. Results: The oxidation behavior indicated by the growth of oxide thickness. The titanium-oxide layer were consisted two layer of a porous external and a dense internal one. The reaction layer and surface roughness increased with increasing investment material temperature. Conclusion: In this work, The most suitable mold temperature in casting of pure titanium was $200^{\circ}C$.

A Study on EPMA on Ni-Cr Alloy by Nb content for Porcelain Fused to Metal Crown (Nb이 첨가된 금속소부도재관용 Ni-Cr 합금 표면의 EPMA 관찰)

  • Kim, Chi-Young;Choi, Sung-Min;Cho, Hyeon-Seol
    • Journal of Technologic Dentistry
    • /
    • v.28 no.1
    • /
    • pp.19-26
    • /
    • 2006
  • The effect of Nb on interfacial bonding characteristics of Ni-Cr alloy for porcelain fused to metal crown (PFM) has been studied in order to investigate oxide layer. A specimens of Ni-Cr alloy, which is 0.8mm in thickness, within the porcelain furnace of 1,000$^{\circ}C$ with four tests such as air, vacuum, air for 5 minutes and vacuum for 5 minutes in order to examine an oxide behavior of alloy surface generated by the adding of Nb to be controlled at a rate of 0, 1, 3 and 5. Oxide film was observed form of the fired specimens with scanning electron microscope (SEM), and at the same time it measured Electron Probe Micro Analyzer (EPMA). The result of this study were as follows: 1. Cr oxide film and Nb oxide film were observed from the surface of specimen to be controlled at a rate of Nb 1%. 2. Nb oxide film was observed from the interface of specimens to be controlled at a rate of Nb 1% and 3%. 3. The stability of oxide films that treated in air were more stable than treated under vacuum.

  • PDF

Comparative investigation of endurance and bias temperature instability characteristics in metal-Al2O3-nitride-oxide-semiconductor (MANOS) and semiconductor-oxide-nitride-oxide-semiconductor (SONOS) charge trap flash memory

  • Kim, Dae Hwan;Park, Sungwook;Seo, Yujeong;Kim, Tae Geun;Kim, Dong Myong;Cho, Il Hwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.4
    • /
    • pp.449-457
    • /
    • 2012
  • The program/erase (P/E) cyclic endurances including bias temperature instability (BTI) behaviors of Metal-$Al_2O_3$-Nitride-Oxide-Semiconductor (MANOS) memories are investigated in comparison with those of Semiconductor-Oxide-Nitride-Oxide-Semiconductor (SONOS) memories. In terms of BTI behaviors, the SONOS power-law exponent n is ~0.3 independent of the P/E cycle and the temperature in the case of programmed cell, and 0.36~0.66 sensitive to the temperature in case of erased cell. Physical mechanisms are observed with thermally activated $h^*$ diffusion-induced Si/$SiO_2$ interface trap ($N_{IT}$) curing and Poole-Frenkel emission of holes trapped in border trap in the bottom oxide ($N_{OT}$). In terms of the BTI behavior in MANOS memory cells, the power-law exponent is n=0.4~0.9 in the programmed cell and n=0.65~1.2 in the erased cell, which means that the power law is strong function of the number of P/E cycles, not of the temperature. Related mechanism is can be explained by the competition between the cycle-induced degradation of P/E efficiency and the temperature-controlled $h^*$ diffusion followed by $N_{IT}$ passivation.

Electrical Characteristics of SiO2/4H-SiC Metal-oxide-semiconductor Capacitors with Low-temperature Atomic Layer Deposited SiO2

  • Jo, Yoo Jin;Moon, Jeong Hyun;Seok, Ogyun;Bahng, Wook;Park, Tae Joo;Ha, Min-Woo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.2
    • /
    • pp.265-270
    • /
    • 2017
  • 4H-SiC has attracted attention for high-power and high-temperature metal-oxide-semiconductor field-effect transistors (MOSFETs) for industrial and automotive applications. The gate oxide in the 4H-SiC MOS system is important for switching operations. Above $1000^{\circ}C$, thermal oxidation initiates $SiO_2$ layer formation on SiC; this is one advantage of 4H-SiC compared with other wide band-gap materials. However, if post-deposition annealing is not applied, thermally grown $SiO_2$ on 4H-SiC is limited by high oxide charges due to carbon clusters at the $SiC/SiO_2$ interface and near-interface states in $SiO_2$; this can be resolved via low-temperature deposition. In this study, low-temperature $SiO_2$ deposition on a Si substrate was optimized for $SiO_2/4H-SiC$ MOS capacitor fabrication; oxide formation proceeded without the need for post-deposition annealing. The $SiO_2/4H-SiC$ MOS capacitor samples demonstrated stable capacitance-voltage (C-V) characteristics, low voltage hysteresis, and a high breakdown field. Optimization of the treatment process is expected to further decrease the effective oxide charge density.

Corrosion Characteristics of Ni-Cr and Co-Cr Alloy Used as a Dental Prosthesis and Its Adhesion to Porcelain (Ni-Cr과 Co-Cr 합금을 이용한 치과보철물의 부식 특성 및 도재 접합성)

  • Kim, Kijung;Choi, Byungki;Oh, Doorok;Choi, Byung-Sang
    • Corrosion Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.141-146
    • /
    • 2016
  • By using Ni-Cr and Co-Cr alloys, porcelain fused to metal (PFM) samples were prepared to examine the interface and the surface corrosion behavior. The potentiodynamic polarization analysis showed that the corrosion current density of Co-Cr alloy ($1.61{\times}10^{-6}A/cm^2$) was three times lower than that of Ni-Cr alloy ($4.83{\times}10^{-6}A/cm^2$) at room temperature. A dental prosthesis consisting of the porcelain fused to Ni-Cr alloy extracted from a patient after approximately four years of usage was examined to assess its resistance to corrosion. OM and SEM images of the metal part revealed a typical pitting corrosion. As compared to porcelain fused to Ni-Cr alloy having a thick layer (${\sim}10{\mu}m$) of oxide at the interface, a relatively thin oxide layer (less than $5{\mu}m$) was formed on Co-Cr alloy, indicating that the interface between Co-Cr alloy and porcelain may have a better adhesion strength than the interface between Ni-Cr alloy and porcelain.

The a-Si:H/poly-Si Heterojunction Solar Cells

  • Kim, Sang-Su;Kim, do-Young;Lim, Dong-Gun;Junsin Yi;Lee, Jae-Choon;Lim, Koeng-Su
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.5
    • /
    • pp.65-71
    • /
    • 1997
  • We present heterojunction solar cells with a structure of metal/a-Si:H(n-i-p)/poly-Si(n-p)/metal for the terrestrial applications. This cell consists fo two component cells: a top n-i-p junction a-Si:Hi cell with wide-bandgap 1.8eV and a bottom n-p junction poly-Si cell with narrow-bandgap 1.1eV. The efficiency influencing factors of the solar cell were investigated in terms of simulation an experiment. Three main topics of the investigated study were the bottom cell with n-p junction poly-Si, the top a-Si:H cell with n-i-p junction, and the interface layer effects of heterojunction cell. The efficiency of bottom cell was improved with a pretreatment temperature of 900$^{\circ}C$, surface polishing, emitter thickness of 0.43$\mu\textrm{m}$, top Yb metal, and grid finger shading of 7% coverage. The process optimized cell showed a conversion efficiency about 16%. Top cell was grown by suing a photo-CVD system which gave an ion damage free and good p/i-a-Si:H layer interface. The heterojunction interface effect was examined with three different surface states; a chemical passivation, thermal oxide passivation, and Yb metal. the oxide passivated cell exhibited the higher photocurrent generation and better spectral response.

  • PDF

A Study on the Chemical State in the ONO Superthin Film by Second Derivative Auger Spectra (2차 미분 Auger 스펙트럼을 이용한 ONO 초박막의 결합상태에 관한 연구)

  • 이상은;윤성필;김선주;서광열
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.10
    • /
    • pp.778-783
    • /
    • 1998
  • Film characteristics of thin ONO dielectric layers for MONOS(metal-oxide-nitride-oxide-semiconductor) EEPROM was investigated by TEM, AES and AFM. Seocnd derivative spectra of Auger Si LVV overlapping peak provide useful information fot chemical state analysis of superthin film. The ONO film with dimension of tunnel oxide 23$\AA$, nitride 33$\AA$, and blocking oxide 40$\AA$ was fabricated. During deposition of the LPCVD nitride film on tunnel oxide, this thin oxide was nitrized. When the blocking oxide was deposited on the nitride film, the oxygen not only oxidized the nitride surface, but diffused through the nitride. The results of ONO film analysis exhibits that it is made up of $SiO_2$ (blocking oxide)/O-rich SiON(interface)/N-rich SiON(nitride)/ O-rich SiON(tunnel oxide)

  • PDF

Temperature cycling test of Cu films on anodized aluminum substrate of metal-PC application

  • Kim, Hyeong-Jin;Park, Jae-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.334-334
    • /
    • 2011
  • We applied N-ion bombardment and heat treatment to the Cu thin films deposited on aluminum oxide layer for the enhancement of adhesion. With e-beam evaporation method. $1,000{\AA}$ thick Cu pre-bombardment layer was deposited on the aluminum oxide surface and then N-ion beam was bombared in order to mix the atoms at the film/substrate interface. Additional $4,000{\AA}$-thick Cu film was the coated. Subsequently, the ion mixide Cu on aluminum oxide was annealed at $200^{\circ}C$ and $300^{\circ}C$ in vacuum.

  • PDF