DOI QR코드

DOI QR Code

Corrosion Characteristics of Ni-Cr and Co-Cr Alloy Used as a Dental Prosthesis and Its Adhesion to Porcelain

Ni-Cr과 Co-Cr 합금을 이용한 치과보철물의 부식 특성 및 도재 접합성

  • Kim, Kijung (Department of Advanced Materials Engineering, Graduate School of Engineering, Chosun University) ;
  • Choi, Byungki (Compact Rolling Team, SeAH Besteel Corp.) ;
  • Oh, Doorok (Department of Materials Science and Engineering, Chosun University) ;
  • Choi, Byung-Sang (Department of Advanced Materials Engineering, Graduate School of Engineering, Chosun University)
  • 김기정 (조선대학교 일반대학원, 첨단부품소재공학과) ;
  • 최병기 ((주)세아베스틸, 소형압연팀 정정파트) ;
  • 오두록 (조선대학교, 재료공학과) ;
  • 최병상 (조선대학교 일반대학원, 첨단부품소재공학과)
  • Received : 2016.05.02
  • Accepted : 2016.06.23
  • Published : 2016.06.30

Abstract

By using Ni-Cr and Co-Cr alloys, porcelain fused to metal (PFM) samples were prepared to examine the interface and the surface corrosion behavior. The potentiodynamic polarization analysis showed that the corrosion current density of Co-Cr alloy ($1.61{\times}10^{-6}A/cm^2$) was three times lower than that of Ni-Cr alloy ($4.83{\times}10^{-6}A/cm^2$) at room temperature. A dental prosthesis consisting of the porcelain fused to Ni-Cr alloy extracted from a patient after approximately four years of usage was examined to assess its resistance to corrosion. OM and SEM images of the metal part revealed a typical pitting corrosion. As compared to porcelain fused to Ni-Cr alloy having a thick layer (${\sim}10{\mu}m$) of oxide at the interface, a relatively thin oxide layer (less than $5{\mu}m$) was formed on Co-Cr alloy, indicating that the interface between Co-Cr alloy and porcelain may have a better adhesion strength than the interface between Ni-Cr alloy and porcelain.

Keywords

References

  1. S. S. Azer, G. M. Ayash, W. M. Johnston, M. F. Khalil and S. F. Rosenstiel, J. Prosthet Dent., 96, 379 (2006). https://doi.org/10.1016/j.prosdent.2006.08.018
  2. J. Pisani-Proenca, M. C. Erhardt, L. F. Valandro, G. Guitierrrez-Aceves, M. V. Bolanos-Carmona, R. Del Castillo-Salmeron, and M. A. Bottino, J. Prosthet Dent., 94, 412 (2006).
  3. J-S. Ahn, E-K. Ko, and K-J. Joo, J. Kor. Acad. of Dent. Tech., 33, 18792 (2011).
  4. K-J. Kim, Ph. D. Thesis, Catholic University of Pusan (2013).
  5. R. M. Joias, R. N. Tango, J. E. J. de Araujo, M. A. J. de Araujo, G. S. F. A. Saavedra, T. J. A. Paes-Junior, and E. T. Kimpara, J. Prosthet. Dent., 99, 55 (2008)
  6. J. W. J. Silva, L. L. Sousa, R. Z. Nakazato, E. N. Codaro, and H. de Felipe, Mater. Sci. and Appl., 2, 42 (2011).
  7. M. Kuschner, Environ Health Perspect, 40, 101 (1981). https://doi.org/10.1289/ehp.8140101
  8. D. L. Tsalve and Z. K. Zaprianov, Environ Health Perspect., 96 (1983).
  9. R. M. De Melo, A. C. Travassos, and M. P. Neisser, J. Prosthet Dent., 93, 64 (2005). https://doi.org/10.1016/j.prosdent.2004.10.017
  10. J. C. Wataha, J. Prosthet. Dent., 83, 223 (2000). https://doi.org/10.1016/S0022-3913(00)80016-5
  11. J. C. Wataha, N. L. O’Dell, B. B. Singh, M. Ghazi, G. M. Whitford, and P. E. Lockwood, J. Biomed. Mater. Res., 58, 537 (2001). https://doi.org/10.1002/jbm.1052
  12. K. Turan, Materials and Design, 30, 445 (2009). https://doi.org/10.1016/j.matdes.2008.06.002
  13. M. Yamamoto, Metal-Ceramics Principle and methods of Makoto-Yamamoto, Quintessence Publishing Co, 110, 483 (1985).
  14. T. Papadopoulos, A. Tsetsekou, and G. Eliades, Eur. J. Prosthodont Restor. Dent., 7, 15 (1999).
  15. W. F. Smith, Structure and Properties of Engineering Alloys, McGraw-Hill, 2 edition, McGraw-Hill (1993).
  16. S-H. Jung, Ms. Thesis, Gyeongsang National University (2014).
  17. Ja. M. Kolotyrkin, Corrosion, 19, 261 (1963). https://doi.org/10.5006/0010-9312-19.8.261
  18. J. Horvath and H. H. Uhlig, J. Electrochem. Soc., 115, 791 (1968). https://doi.org/10.1149/1.2411433
  19. C. M. Wylie, R. M. Shelton, G. J. Fleming and A. Davenport, Dent. Mater., 23, 714 (2007). https://doi.org/10.1016/j.dental.2006.06.011
  20. S-H. Jeon, H-J. Kim, K-H. Kong, and Y-S. Park, Corros. Sci. Tech., 13, 48 (2014). https://doi.org/10.14773/cst.2014.13.2.48
  21. J. R. Galvele, J. Electrochem. Soc., 123, 464 (1976). https://doi.org/10.1149/1.2132857
  22. A case study reported by Metallurgical Technologies, Inc., P.A., Analysis of Cracked Impeller Blade, NC, USA, http://www.met-tech.com/analysis-of-cracked-impeller-blade.html
  23. A. Eliasson, C. F. Arnelund, and A. Johansson, J. Prosthet Dent., 98, 6 (2007). https://doi.org/10.1016/S0022-3913(07)60032-8
  24. H-J. Kim, Ms. Thesis, Catholic University of Pusan (2010).