• 제목/요약/키워드: Mesh Refinement

Search Result 189, Processing Time 0.023 seconds

A Method of Error Estimate for Adaptive Finite Element Mesh Generation (적응 요소 분할을 위한 오차 추정에 관한 연구)

  • Choi, Hong-Soon;Choi, Kyung;Jung, Hyun-Kyo;Hahn, Song-Yop
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.3
    • /
    • pp.141-145
    • /
    • 1988
  • This paper reports a new and simple posteriori error estimate method for adaptive finite element mesh genration especially for the magnetic field problems. To estimate local errors, we consider the interelement boundary conditions. Elements which violate much the conditions are considered to have great errors. Magnetic flux density errors are considered as a basis for refinement. This estimator is tested on two dimensional proplems with singular points. The estimated errors are always under estimated but in same order as exact errors, and this algorithm is much simpler and more convenient than other methods. The adaptive mesh gives much better rate of convergence in global errors than the uniform mesh.

  • PDF

An Automated Adaptive Finite Element Mesh Generation for Dynamics

  • Yoon, Chongyul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.83-88
    • /
    • 2019
  • Structural analysis remains as an essential part of any integrated civil engineering system in today's rapidly changing computing environment. Even with enormous advancements in capabilities of computers and mobile tools, enhancing computational efficiency of algorithms is necessary to meet the changing demands for quick real time response systems. The finite element method is still the most widely used method of computational structural analysis; a robust, reliable and automated finite element structural analysis module is essential in a modern integrated structural engineering system. To be a part of an automated finite element structural analysis, an efficient adaptive mesh generation scheme based on R-H refinement for the mesh and error estimates from representative strain values at Gauss points is described. A coefficient that depends on the shape of element is used to correct overly distorted elements. Two simple case studies show the validity and computational efficiency. The scheme is appropriate for nonlinear and dynamic problems in earthquake engineering which generally require a huge number of iterative computations.

Mismatching Refinement with Domain Decomposition and Its Application to the Finite Element Analysis of the Extrusion Process (영역분할에 의한 격자세분화 기법 및 압출공정의 유한요소해석에의 적용)

  • Park, Keun;Yang, Dong-Yol
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.284-293
    • /
    • 1999
  • The rigid-plastic finite element analysis requires a large amount of computation time due to its non-linearity. For economic computation, mismatching refinement, and efficient domain decomposition method with different mesh density for each sub domain, is developed. A modified velocity alternating scheme for the interface treatment is proposed in order to obtain good convergence and accuracy. As a numerical example, the axisymmetric extrusion process is analyzed. The results are discussed for the various velocity update schemes form the viewpoint of convergence and accuracy. The three-dimen-sional extrusion process with rectangular section is analyzed in order to verify the effectiveness of the proposed method. Comparing the results with those of the conventional method of full region analysis, the accuracy and the computational efficiency of the proposed method are then discussed.

  • PDF

Adaptive Mesh Structure for Realtime Paper Crumple Simulation (실시간 종이 구김 시뮬레이션을 위한 적응적 메쉬 구조)

  • Kang, Young-Min
    • Journal of Korea Game Society
    • /
    • v.9 no.4
    • /
    • pp.97-106
    • /
    • 2009
  • In this paper, a realtime approach to the simulation of virtual paper with an adaptive mesh structure is proposed. The proposed method can be applied to arbitrary triangular mesh structures and efficiently produces wrinkles and creases on the paper surface with stable numerical integration and deformation-based mesh refinement. In order to plausibly represent the crumples on the paper object, we employed an adaptive mesh structure with breakable springs. Because the adaptive structure continuously inserts or removes vertices and edges to or from the mesh structure, the conservation of the mass and the momentum should be carefully taken into account for the plausible simulation of the virtual paper. The proposed method produced plausible animation of paper-like thin shell in realtime environments.

  • PDF

Predicting BVI Loadings and Wake Structure of the HARTII Rotor Using Adaptive Unstructured Meshes

  • Yu, Dong-Ok;Jung, Mun-Seung;Kwon, Oh-Joon;Yu, Yung-H.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.2
    • /
    • pp.95-105
    • /
    • 2009
  • The flow fields around the HARTII rotor were numerically investigated using a viscous flow solver on adaptive unstructured meshes. An overset mesh and a deforming mesh technique were used to handle the blade motion including blade deflection, which was obtain from the HARTII experimental data. A solution-adaptive mesh refinement technique was also used to capture the rotor wake effectively. Comparison of the sectional normal force and pitching moment at 87% radial station between the two cases, with and without the blade deflection, showed that the blade loading is significantly affected by blade torsion. It was found that as the mesh was refined, the strength of tip vortex is better preserved, and the magnitude of high frequency blade loading, caused by blade-vortex interaction (BVI), is further magnified. It was also found that a proper time step size, which corresponds to the cell size, should be used to predict unsteady solutions accurately. In general, the numerical results in terms of the unsteady blade loading and the rotor wake show good agreement with the experimental data.

Three Dimensional Finite Element Analysis of Free Surface Flow Using Filling Pattern Technique and Adaptive Grid Refinement (형상 충전 및 격자 세분화를 이용한 삼차원 자유 표면 유동의 유한 요소 해석)

  • Kim, Ki-Don;Yang, Dong-Yol;Jeong, Jun-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.11
    • /
    • pp.1348-1358
    • /
    • 2004
  • The filling pattern and an adaptive grid refinement based on the finite element method and Eulerian mesh advancement approach have been developed to analyze incompressible transient viscous flow with free surfaces. The governing equation fur flow analysis is Navier-Stokes equation including inertia and gravity effects. The mixed FE formulation and predictor-corrector method are used effectively for unsteady numerical simulation. The flow front surface and the volume inflow rate are calculated using the filling pattern technique to select an adequate pattern among seven filling patterns at each tetrahedral control volume. By adaptive grid refinement, the new flow field that renders better prediction in flow surface shape is generated and the velocity field at the flow front part is calculated more exactly. In this domain the elements in the surface region are made finer than those in the remaining regions for more efficient computation. The collapse of a water dam and the filling of a fluidity spiral have been analyzed. The numerical results have been in good agreement with the experimental results and the efficiency of the adaptive grid refinement and filling pattern techniques have been verified.

Triangulation of Voronoi Faces of Sphere Voronoi Diagram using Delaunay Refinement Algorithm (딜러니 개선 알고리듬을 이용한 삼차원 구의 보로노이 곡면 삼각화)

  • Kim, Donguk
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.4
    • /
    • pp.123-130
    • /
    • 2018
  • Triangulation is one of the fundamental problems in computational geometry and computer graphics community, and it has huge application areas such as 3D printing, computer-aided engineering, surface reconstruction, surface visualization, and so on. The Delaunay refinement algorithm is a well-known method to generate quality triangular meshes when point cloud and/or constrained edges are given in two- or three-dimensional space. In this paper, we propose a simple but efficient algorithm to triangulate Voronoi surfaces of Voronoi diagram of spheres in 3-dimensional Euclidean space. The proposed algorithm is based on the Ruppert's Delaunay refinement algorithm, and we modified the algorithm to be applied to the triangulation of Voronoi surfaces in two ways. First, a new method to deciding the location of a newly added vertex on the surface in 3-dimensional space is proposed. Second, a new efficient but effective way of estimating approximation error between Voronoi surface and triangulation. Because the proposed algorithm generates a triangular mesh for Voronoi surfaces with guaranteed quality, users can control the level of quality of the resulting triangulation that their application problems require. We have implemented and tested the proposed algorithm for random non-intersecting spheres, and the experimental result shows the proposed algorithm produces quality triangulations on Voronoi surfaces satisfying the quality criterion.

Haptic Simulation with s-FEM (s-FEM 을 이용한 햅틱 시뮬레이션)

  • Jun, Seong-Ki;Cho, Maeng-Hyo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.780-785
    • /
    • 2007
  • Accurate and fast haptic simulations of deformable objects are desired in many applications such as medical virtual reality. In haptic interactions with a coarse model, the number of nodes near the haptic interaction region is too few to generate detailed deformation. Thus, local refinement techniques need to be developed. Many approaches have employed purely geometric subdivision schemes, but they are not proper in describing the deformation behavior of deformable objects. This paper presents a continuum mechanics-based finite element adaptive method to perform haptic interaction with a deformable object. This method superimposes a local fine mesh upon a global coarse model, which consists of the entire deformable object. The local mesh and the global mesh are coupled by the s-version finite element method (s-FEM), which is generally used to enhance accurate solutions near the target points even more. The s-FEM can demonstrate a reliable deformation to users in real-time.

  • PDF

Unstructured Moving-Mesh Hydrodynamic Simulation

  • Yun, Kiyun;Kim, Juhan;Yoon, Suk-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.65.2-65.2
    • /
    • 2014
  • We present a new hydrodynamic simulation code based on the Voronoi tessellation for estimating the density precisely. The code employs both of Lagrangian and Eulerian description by adopting the movable mesh scheme, which is superior to the conventional SPH (smoothed particle hydrodynamics) and AMR (adaptive mesh refinement) schemes. The code first generates unstructured meshes by the Voronoi tessellation at every time step, and then solves the Riemann problem for all surfaces of each Voronoi cell so as to update the hydrodynamic states as well as to move current meshes. Besides, the IEM (incremental expanding method) is devised to compute the Voronoi tessellation to desired degree of speed, thereby the CPU time is turned out to be just proportional to the number of particles, i.e., O(N). We discuss the applications of our code in the context of cosmological simulations as well as numerical experiments for galaxy formation.

  • PDF

Haptic Simulation for Deformable Object with s-FEM (s-FEM을 이용한 변형체 햅틱 시뮬레이션)

  • Jun Seong-Ki;Choi Jin-Bok;Cho Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.373-380
    • /
    • 2006
  • Accurate and fast haptic simulations of deformable objects are desired in many applications such as medical virtual reality. In haptic interactions with a coarse model, the number of nodes near the haptic interaction region is too few to generate detailed deformation. Thus, local refinement techniques need to be developed. Many approaches have employed purely geometric subdivision schemes, but they are not proper in describing the deformation behavior of deformable objects. This paper presents a continuum mechanics-based finite element adaptive method to perform haptic interaction 'with a deformable object. This method superimposes a local fine mesh upon a global coarse model, which consists of the entire deformable object. The local mesh and the global mesh are coupled by the s-version finite element method (s-FEM), which is generally used to enhance accurate solutions near the target points even more. The s-FEM can demonstrate a reliable deformation to users in real-time.

  • PDF