• Title/Summary/Keyword: Mesh Refinement

Search Result 189, Processing Time 0.024 seconds

Strategy for refinement of nodal densities and integration cells in EFG technique

  • Patel, Bhavana S.S.;Narayan, Babu K.S.;Venkataramana, Katta
    • Structural Engineering and Mechanics
    • /
    • v.59 no.5
    • /
    • pp.901-920
    • /
    • 2016
  • MeshFree methods have become popular owing to the ease with which high stress gradients can be identified and node density distribution can be reformulated to accomplish faster convergence. This paper presents a strategy for nodal density refinement with strain energy as basis in Element-Free Galerkin MeshFree technique. Two popular flat plate problems are considered for the demonstration of the proposed strategies. Issue of integration errors introduced during nodal density refinement have been addressed by suggesting integration cell refinement. High stress effects around two symmetrical semi-circular notches under in-plane axial load have been addressed in the first problem. The second considers crack propagation under mode I and mode II fracture loading by the way of introducing high stress intensity through line crack. The computational efficacy of the adaptive refinement strategies proposed has been highlighted.

Application of adaptive mesh refinement technique on digital surface model-based urban flood simulation

  • Dasallas, Lea;An, Hyunuk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.122-122
    • /
    • 2020
  • Urban flood simulation plays a vital role in national flood early warning, prevention and mitigation. In recent studies on 2-dimensional flood modeling, the integrated run-off inundation model is gaining grounds due to its ability to perform in greater computational efficiency. The adaptive quadtree shallow water numerical technique used in this model implements the adaptive mesh refinement (AMR) in this simulation, a procedure in which the grid resolution is refined automatically following the flood flow. The method discounts the necessity to create a whole domain mesh over a complex catchment area, which is one of the most time-consuming steps in flood simulation. This research applies the dynamic grid refinement method in simulating the recent extreme flood events in Metro Manila, Philippines. The rainfall events utilized were during Typhoon Ketsana 2009, and Southwest monsoon surges in 2012 and 2013. In order to much more visualize the urban flooding that incorporates the flow within buildings and high-elevation areas, Digital Surface Model (DSM) resolution of 5m was used in representing the ground elevation. Results were calibrated through the flood point validation data and compared to the present flood hazard maps used for policy making by the national government agency. The accuracy and efficiency of the method provides a strong front in making it commendable to use for early warning and flood inundation analysis for future similar flood events.

  • PDF

MLFMA for Capacitance Extraction using Adaptive Triangular Mesh

  • Kim, Han;Ahn, Chang-Hoi
    • Journal of electromagnetic engineering and science
    • /
    • v.1 no.1
    • /
    • pp.78-82
    • /
    • 2001
  • For fast capacitance computation, a simple mesh refinement technique on MLFMA(Multi-Level Fast Multipole Algorithm) is proposed The triangular meshes are refined mainly in the area which has heavy charge density. The technique is applied to the capacitance extraction of three dimensional conductors. The results show good convergence with comparable accuracy. An adaptive technique concerned with MLFMA is useful to reduce computation time and the number of elements without additional computational efforts in large three dimensional problems.

  • PDF

A Study for pointwise by a 1-irregular mesh (1-irregular mesh를 이용한 편미분 방정식의 수렴성에 관한 연구)

  • Lee Hyeong;Jin Gi Beom
    • The Mathematical Education
    • /
    • v.31 no.2
    • /
    • pp.121-132
    • /
    • 1992
  • The pointwise convergence define the relation-ship between the mesh-size and the tolerance. This will play an important role in improving quality of finite element approximate solution. In this paper, We evaluate the convergence on a certaon unknown point with a 1-irregular mesh refinement. This m that the degree of freedom is minimized within a tolerance.

  • PDF

Development of an Algorithm Preserving Sharp-Edges of Control Meshes in the Doo-Sabin Subdivision Scheme (조정 메쉬의 각진 모서리를 유지하기 위한 수정 Doo-Sabin 곡면 분할 알고리듬 개발)

  • 이현찬;주병준;홍충성
    • Korean Journal of Computational Design and Engineering
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 2003
  • Recently, designing 3D objects using various modeling techniques become getting more important issues in related industrial fields. The subdivision scheme is a technique that generates a smooth sur-face through many times of refinement processes that split polygons of control mesh into several smaller polygons. In this paper, we propose a new subdivision algorithm that preserves sharp-edges of control mesh after several refinement processes in the Doo-Sabin subdivision scheme. Using the pro-posed algorithm, the Doo-Sabin subdivision scheme can be well applied to modeling 3D objects with sharp-edges.

FE Analysis for Tread Forming of Tire by Using an Adaptive Mesh Refinement (적응적 요소 재구성을 이용한 타이어 트레드 성형의 유한 요소 해석)

  • Kim, Y.H.;Lee, H.Y.;Lyu, M.Y.
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.632-635
    • /
    • 2007
  • Automobile tire has very complicated shape and is composed of rubber, steel cord and ply cord, Tread pattern of tire is very essential for the basic characteristics of tire, such as braking, acceleration and comfortableness. Tire components such as tread, sidewall, and spex are prepared by forcing uncured rubber compound through an extruder to shape during curing process. Because of its complexity of shape, adaptive mesh refinement was used for the analysis of tire tread. Effects of forming variables were evaluated.

  • PDF

A meshfree method based on adaptive refinement method and its application for deformation analysis (변형해석을 위한 적응적 세분화방법에 기초한 무요소법)

  • Han, Kyu-Taek
    • Design & Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.34-39
    • /
    • 2013
  • The finite element method(FEM) presents some limitations when the mesh becomes highly distorted. For analysis of metal forming processes with large deformation, the conventional finite element method usually requires several remeshing operations due to severe mesh distortion. The new computational method developed in the recent years, usually designated by meshfree method, offers an attractive approach to avoid those time-consuming remeshing efforts. This new method uses a set of points to represent the problem domain with no need of an additional mesh. Also this new generation of computational method provides a higher rate of convergence than that of the conventional finite element methods. One of the promising applications of meshfree methods is the adaptive refinement for problems having multi-scale nature. In this study, an adaptive node generation procedure is proposed and also to illustrate the efficiency of proposed method, several numerical examples are presented.

  • PDF

ADAPTIVE MESH REFINEMENT FOR WEIGHTED ESSENTIALLY NON-OSCILLATORY SCHEMES

  • Yoon, Dae-Ki;Kim, Hong-Joong;Hwang, Woon-Jae
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.4
    • /
    • pp.781-795
    • /
    • 2008
  • In this paper, we describe the application procedure of the adaptive mesh refinement (AMR) for the weighted essentially non-oscillatory schemes (WENO), and observe the effects of the derived algorithm when problems have piecewise smooth solutions containing discontinuities. We find numerically that the dissipation of the WENO scheme can be lessened by the implementation of AMR while the accuracy is maintained. We deduce from the experiments that the AMR-implemented WENO scheme captures shocks more efficiently than the WENO method using uniform grids.

Adaptive Moment-of-Fluid Method:a New Volume-Tracking Method for Multiphase Flow Computation

  • Ahn, Hyung-Taek;Shashkov, Mikhail
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.334-336
    • /
    • 2008
  • A novel adaptive mesh refinement (AMR) strategy based on the Moment-of-Fluid (MOF) method for volume-tracking dynamic interface computation is presented. The Moment-of-Fluid method is a new interface reconstruction and volume advection method using volume fraction as well as material centroid. The mesh refinement is performed based on the error indicator, the deviation of the actual centroid obtained by interface reconstruction from the reference centroid given by moment advection process. Using the AMR-MOF method, the accuracy of volume-tracking computation with evolving interfaces is improved significantly compared to other published results.

  • PDF

Adaptive Moment-of-Fluid Method: a New Volume-Tracking Method for Multiphase Flow Computation

  • Ahn, Hyung-Taek;Shashkov, Mikhail
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.334-336
    • /
    • 2008
  • A novel adaptive mesh refinement (AMR) strategy based on the Moment-of-Fluid (MOF) method for volume-tracking dynamic interface computation is presented. The Moment-of-Fluid method is a new interface reconstruction and volume advection method using volume fraction as well as material centroid. The mesh refinement is performed based on the error indicator, the deviation of the actual centroid obtained by interface reconstruction from the reference centroid given by moment advection process. Using the AMR-MOF method, the accuracy of volume-tracking computation with evolving interfaces is improved significantly compared to other published results.

  • PDF