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MLFMA for Capacitance Extraction using Adaptive Triangular Mesh
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Abstract

For fast capacitance computation, a simple mesh refinement technique on MLFMA(Multi-Level Fast Multipole Algorithm) is proposed.
The triangular meshes are refined mainly in the area which has heavy charge denmsity. The technique is applied to the capacitance
extraction of three dimensional conductots. The results show good convergence with comparable accuracy. An adaptive technique
concerned with MLFMA is useful to reduce computation time and the number of elements without additional computational efforts in

large three dimensional problems.
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I. INTRODUCTION

There are many methods to compute the capacitance of com-
plicated three-dimensional structures. Algorithms using MOM
(method of moments™) or BEM(boundary-element methods™™)
are commonly used to compute the capacitances of three-dimen-
sional structures,

Especially, recently developed MLFMA(Multi-Level Fast
Multipole Algorithm) is effectively used to solve capacitance of
large systems®™Y, The computation time complexity for the
algorithm is shown to grow nearly as O(mn), where n is the
number of elements used to discretize a conductor surfaces, and
m is the number of conductors. Although the algorithm is very
efficient, conventional uniform surface tessellation is not
efficient for interpolating the charge distribution. However, in
authors' knowledge, only a few work concerned with the
adaptive mesh MLFMA has been reported™. To enhance the
advantage of MLFMA, mesh refinement techniques with no
further additional computation effort are indispensable. In this
paper, the efficiency of the automatic surface mesh tessellation
and refinement technique is verified.

II. THEORY

The capacitance of an m-conductor geometry can be summ-
arized by an m by m symmetric matrix C, where the j th column
of C has a positive entry C,, representing the self-capacitance of
conductor j, and negative entries C,, representing coupling capa-
citance between conductors j and i (i # j). To determine the jth
column of the capacitance matrix, the short-circuit capacitance
technique can be used. Then C, is numerically equal to the
charge on conductor #(i=1,2," * ", m). Repeating this proce-
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dure m times gives the m columns of C.

The methods to extract the capacitance of arbitrary conduct-
ing structures are based on Poisson's equation. Considering that
the medium surrounding the conductors is homogeneous, it is
necessary to solve the integral equation for the surface charge
density

o(r) = J‘Wfamd(r') G(r, ¥) ds, M

where @ (») is the surface potential, &(+) is the surface
charge density, and G (+, ») is the Green's function correspon-
ding to the given structure. The integral equations in (1) can be
reduced to a matrix equation through a mathematical procedure
called the method of moments. Equation (1) can be written as
a vector-matrix expression

7 = Fg, (2)

where g=[®1,®2,‘ - oy ad T=1q,q, -

- - gn1 7 represent the discrete element potentials and element
charges, respectively. P is the potential or influence matrix

between these elements. The entries of the N by N matrix P are
defined by

P;= 71]_ f ooy CCT2 7 ()
which depend only on the geometrical properties of the two
elements 7 and /.

If the number of the discrete element, N, is small, the system
of linear equations (2) can be solved using a direct scheme such
as Gaussian elimination. In practice, however, since N is very
large, it takes long computation time to use a direct method in
which the computational time for the solution is O(NS) . In the
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case of using iterative method, the time complexity for matrix
-vector multiplication can be reduced to OV log N) with the
multipole expansion methods. Especially, MLFMA (Multi-Level
Fast Multipole Algorithm) is effectively used to solve this pro-
blem in O(N).

M. MULTI-LEVEL FAST MULTIPOLE ALGORITHM

The key idea in the Fast Multipole Algorithm is to develop
a scheme to calculate far-field interactions., In the N-body
problem, the strength of the interaction is inversely proportional
to the distance between the two particles, commonly referred to
as a Coulombic interaction. As two particles get far away, the
strength of the interaction diminishes. In these hijerarchical
methods the far-field particles are grouped together so that the
number of interactions can be reduced,

A complete description of the Fast Multipole Algorithm is not
given here; the original description is in [6], and its application
to capacitance extraction is described in [3]~[5],[7].[8]. Here,
brief description for the adaptive algorithm is given.

3-1 Multipole Expansions

Multipole expansions are often used to approximate the far
field due to a confined charge distribution. As shown in Fig 1,
the potential at the center of a panel i, due to the surface char-
ges on those d panels are approximately given by the truncated
multipole expansion

My .
lp-(ri,mi.ez)":‘d‘ i ﬁ 7,;_1+]_ Yn(wi,gi)r (4)

n=0 m=-—n

where the spherical coordinates of the evaluation location are
measured relative to the origin of the multipole expansion.
Yy (®,;6,) are the surface spherical harmonics, M? are the

(t d.0)

® = multipole expansion

Fig. 1. The evaluation of the potential at ( »; @, 4;) .

rultipole coefficients determined from the panel charges, and 7
is the expansion order. The multipole expansion coefficients are
given by

Mi= 3 4;0] Vi (@) )

where p; @, and $, are the spherical coordinates of the jth

charge relative to the sphere's center. Given the multipole coe-
fficients, the same multipole expansion can be used to evaluate
the potential at many panel centers. For example, in Fig. 1 there
are d charged panels. The potentials of the panel centers must
be evaluated. A direct calculation of those potentials requires
order 4" operations, but only order d operations are needed if
the multipole expansion is used(assuming the expansion order /
Is fixed).

3-2 Local Expansions

In general, the truncated local expansion approximation for
the exact potential in a sphere caused by charges outside the
radius of the sphere is given by

v(r0,0)~ X 3 LIYi(0,6)7] (6)

7; @;and @, are the spherical coordinates of the j th evaluat-
ion location with respect to the sphere’s center, and the 1.7

factors are the complex local expansion coefficients. For a set
of d charges outside the sphere, the local expansion coefficients
are given by

" ai —m
Ly= S~ v, 7
where o; o, and 4, are the spherical coordinates of the ith

charge relative to the sphere's center of the sphere containing the
evaluation points.

3-3 The Multipole Algorithm

To explain the multipole algorithm, the top view of a simple
three dimensional example(two separated bars) is shown in Fig,
2. The biggest cube that contains the entire collection of panels
for the problem of interest is determined. This cube will be
referred to as the level 0, or root cube. Then, the volume of the
cube is broken into eight child cubes of equal size, referred to
as level 1 cubes. Each has the level 0 cube as its parent. Each
of the level 1 cubes is then subdivided into eight level 2 child
cubes. By the same procedure, the cube is divided again into
eight equally sized cubes, which are at level 3, and the panels
are again distributed based on their center point locations. The
number of levels can be further raised depending on the problem
size,
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Fig. 2. Cubes of the simple three dimensional example(Top
view of two separated bars).

The evaluation points of a cube are the center points of the
panels associated with the cube.The nearest neighbors of a cube
are those cubes on the same level which have a corner in
common with the given cube. The second nearest neighbors of
a cube are those cubes on the same level which are not nearest
neighbors but have a corner in common with a nearest neighbor.
The interaction cubes of a given cube are those cubes which are
either the second nearest neighbors of the given cube's parent,
or children of the given cube's parent's nearest neighbors,
excluding nearest or second nearest neighbors of the given cube.

The structure of the multipole algorithm for computing the n
panel potentials form n panel charges is given below.

+ Computes the potential due to nearby charges directly.

+ Computes the multipole expansion coefficients for every
cube at every level

+ Shift the multipole expansion about the child cube's center
to a multipole expansion about the cube's center and add it
to the multipole expansion coefficient for the cube.

+ Convert the multipole expansion about the center of the
interaction cube to a local expansion about the cube's center
and add it to the local expansion for the cube.

+ Shift that expansion to a local expansion about the cube's
center, if the cube's parent has a local expansion.

+ Evaluates the local expansions at the finest level.

The conversion and shift operations are linear functions of the
charges or the expansion coefficients when the geometry is
fixed. All coefficients matrices are computed once and stored.
These geometry-dependent matrices are used repeatedly in
subsequent matrix-vector product calculations.
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Fig. 3. Diagram of adaptive refinement algorithm.

IV. ADAPTIVE REFINEMENT TECHNIQUE

Many error estimations and mesh refinement methods are
researched and applied to the capacitance computation problem,
mainly for the numerical methods based on differential equation,
e.g. FEM. To fully take advantage of the MLFMA, simple error
estimation and mesh refinement technique with least additional
computational cost is required. In this calculation, it is supposed
that the errors are mainly spread near edges, corners, and
surfaces faced each other which have large charge density than
other region, and mesh can be readily refined by using the auto-
matic mesh algorithm. The flow chart of the adaptive refinement
algorithm is shown in Fig. 3. At first an initial mesh is
generated, and the integral equation is solved using MLFMA. In
the following, the capacitance matrix is computed and the
refinement of the mesh follows in regions of heavily charge
density (see Fig. 4). The problem is solved repeatedly until con-
verged.

V. NUMERICAL RESULTS AND CONCLUSION

To test this proposed technique, we calculated the capaci-
tances of the simple two 3-dimensional conducting bars shown

Fig. 4. The refined meshes of two conducting bars.
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Fig. 5. Convergence of capacitance value using adaptive
triangular mesh.

Table 1. Capacitance values

Capacitance Matrix Entry (pF)
Cl1 C12
Uniform Triangular Mesh
(816 elements) 254876 80226
Adaptive Triangular Mesh _
(by magnitude of q) (646 elements) 25494 802.14
Adaptive Triangular Mesh B
(by gradient of q) (636 clements) 2549.3 803.05
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Fig. 6. Comparison of the CPU times(on P-III 800 MHz).

in Fig. 4(two bars spaced 60 m apart, both have 20 m x 20 m
cross section and 60 m length). In Fig. 5, the results using the
adaptive meshes are compared with one using uniform triangular
mesh. The errors are estimated by two different schemes, one is
by using the gradient of the charge density, and the other is by
using the magnitude of the charge density. The results using
these two different methods show very similar convergence,
Therefore, for this capacitance extraction, the simple error

estimation by using the magnitude of the charge density is more
efficient than the one by using the gradient of the charge density
which requires additional computation time. The converged
capacitance values are in Table 1 for this model. Fig. 6 shows
the computation time of the matrix solving in MOM and
MLFMA.

By using the mesh refinement technique applied to MLFMA,
we can further reduce the computation time(ie., time comple-
xity) as well as the unknown variables preserving the same
accuracy. This makes it possible to efficiently solve very large
problem.
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