• 제목/요약/키워드: Membrane stiffness

검색결과 105건 처리시간 0.018초

Interfacial properties of composite shotcrete containing sprayed waterproofing membrane

  • Park, Byungkwan;Lee, Chulho;Choi, Soon-Wook;Kang, Tae-Ho;Kim, Jintae;Choi, Myung-Sik;Jeon, Seokwon;Chang, Soo-Ho
    • Geomechanics and Engineering
    • /
    • 제16권4호
    • /
    • pp.385-397
    • /
    • 2018
  • This study evaluates the interfacial properties of composite specimens consisting of shotcrete and sprayed waterproofing membrane. Two different membrane prototypes were first produced and tested for their waterproofing ability. Then composite specimens were prepared and their interfacial properties assessed in direct shear and uniaxial compression tests. The direct shear test showed the peak shear strength and shear stiffness of the composites' interface decreased as the membrane layer became thicker. The shear stiffness, a key input parameter for numerical analysis, was estimated to be 0.32-1.74 GPa/m. Shear stress transfer at the interface between the shotcrete and membrane clearly emerged when measuring peak shear strengths (1-3 MPa) under given normal stress conditions of 0.3-1.5 MPa. The failure mechanism was predominantly shear failure at the interface in most composite specimens, and shear failure in the membranes. The uniaxial compression test yielded normal stiffness values for the composite specimens of 5-24 GPa/m. The composite specimens appeared to fail by the compressive force forming transverse tension cracks, mainly around the shotcrete surface perpendicular to the membrane layer. Even though the composite specimens had strength and stiffness values sufficient for shear stress transfer at the interfaces of the two shotcrete layers and the membrane, the sprayed waterproofing membrane should be as thin as possible whilst ensuring waterproofing so as to obtain higher strength and stiffness at the interface.

막구조물의 파손단면에서의 응력집중 현상에 관한 연구 (A Study on the Stress Concentration at Crack of Membrane Structures)

  • 전진형;정을석;김승덕
    • 한국공간구조학회:학술대회논문집
    • /
    • 한국공간구조학회 2005년도 춘계학술발표회 및 정기총회 2권1호(통권2호)
    • /
    • pp.89-98
    • /
    • 2005
  • Membrane structures, a kind of lightweight soft structural system, are used for spatial structures. The material property of the membrane has strong axial stiffness, but little bending stiffness. Therefore membrane structures arc unstable structures initially. These soft structures need to be introduced initial stresses first because of its initial unstable state, and it happens large deformation phenomenon. To find the structural shape after large deformation caused by initial stiffness introduced, we need the shape analysis considering geometric nonlinearity in structural design procedure. In this study, we investigate into the stress concentration at crack of membrane structures. Therefore, using the nonlinear analysis program that NASS (Nonlinear Analysis for Spatial Structures) perform nonlinear analysis, and stress distribution for creak length investigate for using linear elastic fracture mechanics.

  • PDF

막 구조물의 측지선을 이용한 재단도 생성에 관한 연구 (A Study on Cutting Pattern Generation of Membrane Structures by Using Geometric Line)

  • 안상길;손수덕;김승덕
    • 한국공간구조학회:학술대회논문집
    • /
    • 한국공간구조학회 2005년도 춘계학술발표회 및 정기총회 2권1호(통권2호)
    • /
    • pp.125-132
    • /
    • 2005
  • Membrane structures, a kind of lightweight soft structural system, are used for spatial structures. The material property of the membrane has strong axial stiffness, but little bending stiffness. The design procedure of membrane structures are needed to do shape finding, stress-deformation analysis and cutting pattern generation. In shape finding, membrane structures are unstable structures initially. These soft structures need to be introduced initial stresses because of its initial unstable state, and it happens large deformation phenomenon. And also there are highly varied in their size, curvature and material stiffness. So, the approximation inherent in cutting pattern generation methods is quite different. Therefore, in this study, to find the structural shape after large deformation caused by Initial stress, we need the shape analysis considering geometric nonlinear ten And the geodesic line on surface of initial equilibrium shape and the cutting pattern generation using the geodesic line is introduced.

  • PDF

Concrete stiffness matrices for membrane elements

  • Hsu, Thomas T.C.
    • Structural Engineering and Mechanics
    • /
    • 제5권5호
    • /
    • pp.599-608
    • /
    • 1997
  • The concrete stiffness matrices of membrane elements used in the finite element analysis of wall-type structures are reviewed and discussed. The behavior of cracked reinforced concrete membrane elements is first described by summarizing the constitutive laws of concrete and steel established for the two softened truss models (the rotating-angle softened-truss model and the fixed-angle softened-truss model). These constitutive laws are then related to the concrete stiffness matrices of the two existing cracking models (the rotating-crack model and the fixed-crack model). In view of the weakness in the existing models, a general model of the matrix is proposed. This general matrix includes two Poisson ratios which are not clearly understood at present. It is proposed that all five material properties in the general matrix should be established by new biaxial tests of panels using proportional loading and strain-control procedures.

막 구조물의 측지선 탐색과 재단도 작성에 관한 연구 (A Study on The Search of Geodesic Line and Cuting Pattern Generation of Membrane Structures)

  • 전진형;정을석;손수덕;김승덕
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.325-332
    • /
    • 2006
  • Membrane structures, a kind of lightweight soft structural system, are used for spatial structures. The design procedure of membrane structures are needed to do shape finding, stress-deformation analysis and cutting pattern generation, because the material property has strong axial stiffness, but little bending stiffness. The problem of cutting pattern is highly varied in their size, curvature and material stiffness. So, the approximation inherent in cutting pattern generation methods is quite different. Therefore the ordinary computer software of structural analysis & design is not suitable for membrane structures. In this study, we develop the program for cutting pattern generation using geodesic line, and investigate the result of example's cutting pattern in detail.

  • PDF

막구조물의 재단도 작성과 곡률 변화에 따른 손실률에 관한 연구 (A Study on The Cutting Pattern Generation of Membrane Structures and Loss Ratio of Febrics According to the Curvature)

  • 전진형;정을석;손수덕;김승덕
    • 한국공간구조학회:학술대회논문집
    • /
    • 한국공간구조학회 2006년도 춘계 학술발표회 논문집 제3권1호(통권3호)
    • /
    • pp.205-213
    • /
    • 2006
  • Membrane structures, a kind of lightweight soft structural system, are used for spatial structures. The design procedure of membrane structures are needed to do shape finding, stress-deformation analysis and cutting pattern generation, because the material property has strong axial stiffness, but little bending stiffness. The problem of cutting pattern is highly varied in their size, curvature and material stiffness. So, the approximation inherent in cooing pattern generation methods is quite different. Therefore the ordinary computer software of structural analysis & design is not suitable for membrane structures. In this study, we develop the program for cutting pattern generation using geodesic line, and investigate the result of example's cutting pattern in detail.

  • PDF

굴곡형 케이블-막 지붕 시스템의 비선형 해석 (Nonlinear Analysis of Curved Cable-Membrane Roof Systems)

  • 박강근;권익노;이동우
    • 한국공간구조학회논문집
    • /
    • 제17권3호
    • /
    • pp.45-55
    • /
    • 2017
  • The objective of this study is to estimate the mechanical characteristics and nonlinear behaviors on the geometric nonlinear analysis of curved cable-membrane roof systems for long span lightweight roof structures. The weight of a cable-membrane roof dramatically can reduce, but the single layer cable-membrane roof systems are too flexible and difficult to achieve the required structural stiffness. A curved cable roof system with reverse curvature works more effectively as a load bearing system, the pretension of cables can easily increase the structural stiffness. The curved cable roof system can transmit vertical loads in up and downward direction, and work effectively as a load bearing structure to resists self-weights, snow and wind loads. The nonlinear behavior and mechanical characteristics of a cable roof system has greatly an affect by the sag and pretension. This paper is carried out analyzing and comparing the tensile forces and deflection of curved roof systems by vertical loads. The elements for analysis uses a tension only cable element and a triangular membrane element with 3 degree of freedom in each node. The authors will show that the curved cable-membrane roof system with reverse curvature is a very lightweight and small deformation roof for external loads.

4월점 등매개요소를 이용한 인장막구조(引張膜構造)의 형상해석(形狀解析) 및 응력해석(應力解析) (Shape Finding and Stress Analyses of Tension Membrane Structures by using 4-node Isoparametric Elements)

  • 이경수;이형훈;문정호;한상을
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 한국공간정보시스템학회 2004년도 춘계 학술발표회 논문집 제1권1호(통권1호)
    • /
    • pp.222-229
    • /
    • 2004
  • This study purports to analyze equally stressed surfaces in tension-membrane structures through a geometrically nonlinear approach. It adopts the formulation of a 4-node quadrilateral isoparametric plane stress element considering the orthotropic characteristic of membrane textures. Tension structures, which include cables and tension membranes, such as a cable dome initially exhibit unstable conditions because no initial internal stiffness such as bending stiffness is present. Such a structural system requires prestressing to the tension members to attain a stable state. A tension-membrane structure retains a stable three dimensional curved surface as a structural shape. This analytical process for finding the geometry is referred to as Shape Finding Analysis. In order to assess the validity of this study, we examine equally stressed surfaces of saddle and catenary shape shell structures and carry out pertinent stress analyses

  • PDF

막 구조물의 재단도 작성과 막재의 손실률에 관한 연구 (A Study on The Cutting Pattern Generation of Membrane Structures and The Loss-Ratio of Material)

  • 손수덕;정을석;김승덕
    • 한국공간구조학회논문집
    • /
    • 제6권1호
    • /
    • pp.117-127
    • /
    • 2006
  • 경량 연성구조시스템 중 하나인 막 구조물은 대공간 구조물에 많이 사용되어진다. 막 구조물은 축강성이 강하고 휨강성이 매우 작은 재료를 주 구조재로 사용하기 때문에 다른 구조물과 달리 구조설계에서는 형상해석, 응력-변형해석 그리고 재단도 등의 일련의 과정을 필요로 한다. 재단도의 작성에는 구조물의 크기나 곡률 그리고 재료적 강성에 따라 많은 변수가 작용하며 다른 설계과정과는 매우 다르다. 따라서 일반 구조설계용 프로그램은 막 구조물의 구조설계에 부적당하다. 본 연구에서는 막 구조물의 측지선을 이용한 재단도 작성 프로그램을 개발하고, 예제를 통해 재단도 작성결과를 비교 고찰하도록 한다.

  • PDF

제어기법에 따른 비선형 형상해석의 수렴성 및 효율성 펑가 (An Estimate for Convergence and Efficiency of Nonlinear Shape Analysis According to the Control Techniques)

  • 정을석;전진형;손수덕;김승덕
    • 한국공간구조학회:학술대회논문집
    • /
    • 한국공간구조학회 2006년도 춘계 학술발표회 논문집 제3권1호(통권3호)
    • /
    • pp.214-223
    • /
    • 2006
  • Membrane structures, a kind of lightweight soft structural system, are used for spatial structures. The material property of the membrane has strong axial stiffness, but little bending stiffness. The design procedure of membrane structures are needed to do shape finding, stress-deformation analysis and cutting pattern generation. In shape finding, membrane structures are unstable structures initially. These soft structures need to be introduced initial stresses because of its initial unstable state, and happen large deformation phenomenon. Therefore, in this study, to find the structural shape after large deformation caused by initial stress, we need the shape analysis considering geometric nonlinear term. And we investigate the evaluation of shape analysis technique's convergence and efficiency according to the control method

  • PDF