The role of artificial medical intelligence through medical big data has been focused on data-based medical device business and medical service technology development in the field of diagnostic examination of the patient's current condition, clinical decision support, and patient monitoring and management. Recently, with the 4th Industrial Revolution, the medical field changed the medical treatment paradigm from the method of treatment based on the knowledge and experience of doctors in the past to the form of receiving the help of high-precision medical intelligence based on medical data. In addition, due to the spread of non-face-to-face treatment due to the COVID-19 pandemic, it is expected that the era of telemedicine, in which patients will be treated by doctors at home rather than hospitals, will soon come. It can be said that artificial medical intelligence plays a big role at the center of this paradigm shift in prevention-centered treatment rather than treatment. Based on big data, this paper analyzes the current status of artificial intelligence technology for chronic disease patients, market trends, and domestic and foreign company trends to predict the expected effect and future development direction of artificial intelligence technology for chronic disease patients. In addition, it is intended to present the necessity of developing digital therapeutics that can provide various medical services to chronically ill patients and serve as medical support to clinicians.
4차산업 혁명으로 다양한 산업분야에서 빅데이터 기술을 성공적으로 활용하여 경영성과를 얻은 사례들이 보고되고 있다. 본 논문은 의료산업에서 빅데이터를 성공적으로 활용한 혁신 사례들 살펴보고 어떤 데이터가 어떠한 목적으로 활용되고 있으며 이러한 빅데이터가 어떤 가치를 창출하는지 시사점을 도출하고자 하였다. 서론에서는 본 연구의 배경과 방향에 대해 기술하여 연구의 전체적인 구조를 파악하고자 하였다. 문헌 연구에서는 빅데이터의 정의 및 개념과 빅데이터 연구와 관련된 내용, 그리고 의료 산업에서의 빅데이터의 활용과 관련된 내용을 설명하고자 하였다. 본문에서는 질병연구를 위해 국민건강정보와 개인유전정보를 활용한 기술, 개인의 생체정보를 활용하여 개인 건강 서비스, 기업의 업무 프로세스 효율화를 위해 기업이 확보하고 있는 지식 데이터와 전자의무기록 정보를 활용한 사례, 그리고 신약개발을 위해 의료빅데이터 활용 사례 등을 서술하였다. 결론에서는 본 연구의 학문적, 비즈니스적 시사도출과 함께 연구의 성과가 국내 의료산업에 어떠한 도움을 줄 수 있는지 방향성을 제시하고자 하였다.
The technical development and practical applications of big-data for health is one hot topic under the banner of big-data. Big-data medical image fusion is one of key problems. A new fusion approach with coding based on Spherical Coordinate Domain (SCD) in Wireless Sensor Network (WSN) for big-data medical image is proposed in this paper. In this approach, the three high-frequency coefficients in wavelet domain of medical image are pre-processed. This pre-processing strategy can reduce the redundant ratio of big-data medical image. Firstly, the high-frequency coefficients are transformed to the spherical coordinate domain to reduce the correlation in the same scale. Then, a multi-scale model product (MSMP) is used to control the shrinkage function so as to make the small wavelet coefficients and some noise removed. The high-frequency parts in spherical coordinate domain are coded by improved SPIHT algorithm. Finally, based on the multi-scale edge of medical image, it can be fused and reconstructed. Experimental results indicate the novel approach is effective and very useful for transmission of big-data medical image(especially, in the wireless environment).
Purpose: This study measures the influence of facilitating conditions on employees' attitudes towards the adoption of big data analytics by selected medical aid organizations in Durban. In the health care sector, there are various sources of big data such as patients' medical records, medical examination results, and pharmacy prescriptions. Several organizations take the benefits of big data to improve their performance and productivity. Research design, data, and methodology: A survey research strategy was conducted on some selected medical aid organizations. A non-probability sampling and the purposive sampling technique were adopted in this study. The collected data was analysed using version 23 of Statistical Package for Social Science (SPSS) Results: the results show that the "facilitating conditions" have a positive influence on employees' attitudes in the adoption of big data analytics Conclusions: The findings of this study provide empirical and scientific contributions of the facilitating conditions issues regarding employee attitudes toward big data analytics adoption. The findings of this study will add to the body of knowledge in this field and raise awareness, which will spur further research, particularly in developing countries.
본 연구는 보건의료빅데이터를 활용한 보건의료행정 관련학과에서 빅데이터 관련 교육프로그램 활용 가능성에 대한 고찰이다. 본 논문에서는 크게 5가지 관점으로 보건의료빅데이터를 고찰하고자 한다. 첫째, '보건의료빅데이터개방시스템' 이외에도 '한국복지패널', '공공빅데이터', '서울시', '통계청' 등에서 공개하고 있는 공공빅데이터의 특징 및 활용기술에 대하여 살펴보고자 한다. 둘째, 해당되는 보건의료 빅데이터를 전문대학 보건의료행정 및 보건의료정보 관련학과의 정규과목 내에서 살아있는 데이터로써 활용이 가능한지에 대한 적정성 여부를 살펴보고자 한다. 셋째, 기존에 활용하고 있는 통계처리패키지 및 프로그래밍 언어를 활용한 실습실 강의 여부에 가장 적절한 툴을 선정하고자 한다. 넷째, 검증된 보건의료빅데이터와 적정 툴을 활용하여 수업에서 그래프 등의 표현가능성 여부 및 보고서 작성까지의 단계를 시험해보고자 한다. 마지막으로, 최종적으로 휴대성, 설치성, 비용성, 호환성, 빅데이터처리가능성 등을 만족할 수 있는 R언어의 상대적 이점을 기술하고자 한다.
빅데이터는 디지털 환경에서 생성되는 모든 데이터를 의미하며 규모가 방대하고 생성주기가 짧고 다양한 형태를 가지는 특성이 있다. 스마트폰과 인터넷이 대중화되면서 사용자들이 남기는 데이터의 양과 종류는 점점 더 큰 규모로 생성되고 있으며 생성된 빅 데이터로 부터 사용가치가 있는 정보만을 추출하여 활용하는 시기로 전환되고 있다. 빅데이터는 또한 의료 산업이나 보건 분야에도 응용될 수 있으며 IoT, 스마트 헬스케어등의 기술과 함께 융합되어 시너지 효과를 창출하고 있다. 그러나 방대한 데이터를 의미있고 안전하게 활용하기 위해서는 정보보호 등의 선행과제가 존재한다. 따라서 본 연구에서는 의료 빅데이터 활용사례와 기대효과, 해결과제, 마지막으로 의료 빅데이타의 미래전망을 분석한다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제16권8호
/
pp.2772-2786
/
2022
We had researched an automatic authentication-supported medical information platform[6]. The proposed automatic authentication consists of user authentication and mobile terminal authentication, and the authentications are performed simultaneously in patients' emergency conditions. In this paper, we studied on finding emergency conditions for the automatic authentication by applying big data processing and AI mechanism on the extended medical information platform with an added edge computing system. We used big data processing, SVM, and 1-Dimension CNN of AI mechanism to find emergency conditions as authentication means considering patients' underlying diseases such as hypertension, diabetes mellitus, and arrhythmia. To quickly determine a patient's emergency conditions, we placed edge computing at the end of the platform. The medical information server derives patients' emergency conditions decision values using big data processing and AI mechanism and transmits the values to an edge node. If the edge node determines the patient emergency conditions, the edge node notifies the emergency conditions to the medical information server. The medical server transmits an emergency message to the patient's charge medical staff. The medical staff performs the automatic authentication using a mobile terminal. After the automatic authentication is completed, the medical staff can access the patient's upper medical information that was not seen in the normal condition.
빅데이터를 처리할 수 있는 방안 중에 클라우드 환경에서의 빅데이터 처리가 주목할 만한 대안으로 자리 잡아가고 있다. 의료 보건산업에서도 패러다임의 변화와 증가하는 의료비에 대한 절감 압박, 서비스의 수준에 대한 소비자의 관심 증대 등 당면한 문제 해결과 산업 경쟁력 강화 방안의 일환으로 빅데이터 활용 방안에 대한 논의가 활발히 이루어지고 있다. 이에 본 논문에서는 클라우드와 빅데이터와의 관계를 알아보고, 클라우드 기반의 의료 분야에서의 빅데이터 활용사례를 조사 분석하여 효율적인 활용방안과 이를 위한 전망을 제시하고자 한다. 클라우드 기반의 의료 빅데이터의 원활한 운영을 위해서는 인프라 확충과 분석 응용 소프트웨어의 개발, 전문 인력 양성 등의 문제를 해결해야 할 것으로 보인다. 또한, 클라우드 활용에 있어 미비한 법 제도의 정비, 개인정보에 대한 보안기술 및 인식 개선, 데이터의 집중에 따른 권력화 등이 해결해야 할 과제이다.
본 연구에서는 병원정보시스템에서 분야별로 발생하는 의료 빅데이터 자료를 활용하여 가치있는 의료정보를 생성하고 활용할 수 있는 방안을 마련하고자 한다. 본 연구의 결과는 첫 번째, 의료정보시스템의 진료정보와 각종 검사장비 및 의료영상장비와 연동된 PACS의 발생자료를 통합하고 의료 빅데이터를 분석하여 새로운 의료정보를 생성한다. 이렇게 생성된 의료정보는 감염병 및 질병 예방과 질병의 치료를 위한 다양한 건강정보를 생성하게 된다. 두 번째, 환자의 접수내역과 수납내역 그리고 청구내역들을 통합하여 축적해온 의료 빅데이터를 분석하여 다양한 수익통계정보를 생성한다. 이렇게 생성된 수익통계정보는 의료기관의 운영과 수익분석에 활용하기 위한 다양한 경영정보를 생성하게 된다. 이와 같이 병원정보시스템에서 발생하는 의료정보와 공공기관의 의료정보 그리고 개인건강기록의 자료들이 통합이 되면 의료자료를 활용한 가치있는 보건의료정보를 창출하게 된다.
Purpose: The traditional ethical study only suggests a blurred insight on the research using medical big data, especially in this rapid-changing and demanding environment which is called "4th Industry Revolution." Current institutional/ethical issues in big data research need to approach with the thoughtful insight of past ethical study reflecting the understanding of present conditions of this study. This study aims to examine the ethical issues that are emerging in recent health care big data research. So, this study aims to survey the public perceptions on of health care big data as part of the process of public discourse and the acceptance of the utility and provision of big data research as a subject of health care information. In addition, the emerging ethical challenges and how to comply with ethical principles in accordance with principles of the Belmont report will be discussed. Methods: Survey was conducted from June 3th August to 6th September 2020. The online survey was conducted through voluntary participation through Internet users. A total of 319 people who completed the survey (±5.49%P [95% confidence level] were analyzed. Results: In the area of the public's perspective, the survey showed that the medical information is useful for new medical development, but it is also necessary to obtain consents from subjects in order to use that medical information for various research purposes. In addition, many people were more concerned about the possibility of re-identifying personal information in medical big data. Therefore, they mentioned the necessity of transparency and privacy protection in the use of medical information. Conclusion: Big data on medical care is a core resource for the development of medicine directly related to human life, and it is necessary to open up medical data in order to realize the public good. But the ethical principles should not be overlooked. The right to self-determination must be guaranteed by means of clear, diverse consent or withdrawal of subjects, and processed in a lawful, fair and transparent manner in the processing of personal information. In addition, scientific and ethical validity of medical big data research is indispensable. Such ethical healthcare data is the only key that will lead to innovation in the future.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.