• 제목/요약/키워드: Measurement of Thickness

검색결과 1,835건 처리시간 0.029초

평면 초음파를 이용한 미소 간극 측정 (Thickness Measurement of A Thin Layer Using Plane Ultrasonic waves)

  • 김노유
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.415-418
    • /
    • 1995
  • This paper describes a new technique for thickness measurement of a very thin layer less than one-quarter of the wavelength of ultrasonic wave using ultrasonic pulse-echo method. The technique determines the thickness of a thin layer in a layered medium form the amplitudes of the total reflected waves from the back side layer of interst. Thickness of a very thin layer few inch deep inside the media can be measured without using a very high frequency ultrasonic transducer over 100MHz which must be used in the conventional techniques for the precision measurement of a thin layer. The method also requires no inversion process to extract the thickness from the waveform of the reflected waves, so that it makes possible on-line measurement of the thickness of the layer.

  • PDF

저속 충돌 제트로 생성되는 액막의 두께 분포 특성 연구 (A Study of the Characteristics of Thickness Distribution of Liquid Sheet Formed by Two Low Speed Impinging Jets)

  • 한명준;전영우;서태원;강보선
    • 한국분무공학회지
    • /
    • 제26권1호
    • /
    • pp.26-32
    • /
    • 2021
  • In this study, the thickness of the liquid sheet formed by two low speed impinging jets was measured by the direct contact method. The effects of jet velocity and liquid viscosity on the thickness were analyzed and the results were compared with theoretical modeling and optical thickness measurement results. The liquid film thickness decreased as the radius and circumferential angle increased. The jet velocity did not affect the liquid film thickness as predicted in theoretical modeling. In the theoretical modeling, there was no influence of the fluid properties on thickness, but in the case of low viscosity liquids, the thickness was predicted high, and it was well matched in high viscosity liquids. The direct measurement results showed no significant difference from the optical measurement results, thus confirming the reliability of the optical measurement method.

레이저센서를 이용한 비접촉식 두께자동측정기 개발 (Development of Automated Non-contact Thickness Measurement Machine using a Laser Sensor)

  • 조경철;김수연;신기열
    • 한국기계가공학회지
    • /
    • 제14권2호
    • /
    • pp.51-58
    • /
    • 2015
  • In this study, we developed an automated non-contact thickness measurement machine that continuously and precisely measures the thickness and warp of a PCB product using a laser sensor. The system contains a measurement part to measure the thickness in real time automatically according to the set conditions with an alignment supply unit and unloading unit to separate OK and NG products. The measurement machine was utilized to evaluate the performance at each step to minimize measurement error. At the zero setting for the initial setup, the standard deviation of the 216 samples was determined to be $5.52{\mu}m$. A measurement error of 0.5mm and 1.0mm as a standard sample in the measurement accuracy assessment was found to be 2.48% and 2.28%, respectively. In the factory acceptance test, the standard deviation of 1.461mm PCB was measured as $28.99{\mu}m$, with a $C_{pk}$ of 1.2. The automatic thickness measurement machine developed in this study can contribute to productivity and quality improvement in the mass production process.

Ultrasonic Measurement of Interfacial Layer Thickness of Sub-Quarter-Wavelength

  • Kim, No-Hyu;Lee, Sang-Soon
    • 비파괴검사학회지
    • /
    • 제23권6호
    • /
    • pp.577-582
    • /
    • 2003
  • This paper describes a new technique for thickness measurement of a very thin layer less than one-quarter of the wavelength of ultrasonic wave used in the ultrasonic pulse-echo measurements. The technique determines the thickness of a thin layer in a tapered medium from constructive interference of multiple reflection waves. The interference characteristics are derived and investigated in theoretical and experimental approaches. Modified total reflection wave g(t) defined as difference between total and first reflection waves increases in amplitude as the interfacial layer thickness decreases down to zero. A layer thickness less than one-tenth of the ultrasonic wavelength is measured using the maximum amplitude of g(t) with a good accuracy and sensitivity. The method also requires no inversion process to extract the thickness information from the waveforms of reflected waves, so that it makes possible to have the on-line thickness measurement of a thin layer such as a lubricating oil film in thrust bearings and journal bearings during manufacturing process.

Development of Wall-Thinning Evaluation Procedure for Nuclear Power Plant Piping-Part 1: Quantification of Thickness Measurement Deviation

  • Yun, Hun;Moon, Seung-Jae;Oh, Young-Jin
    • Nuclear Engineering and Technology
    • /
    • 제48권3호
    • /
    • pp.820-830
    • /
    • 2016
  • Pipe wall thinning by flow-accelerated corrosion and various types of erosion is a significant and costly damage phenomenon in secondary piping systems of nuclear power plants (NPPs). Most NPPs have management programs to ensure pipe integrity due to wall thinning that includes periodic measurements for pipe wall thicknesses using nondestructive evaluation techniques. Numerous measurements using ultrasonic tests (UTs; one of the nondestructive evaluation technologies) have been performed during scheduled outages in NPPs. Using the thickness measurement data, wall thinning rates of each component are determined conservatively according to several evaluation methods developed by the United States Electric Power Research Institute. However, little is known about the conservativeness or reliability of the evaluation methods because of a lack of understanding of the measurement error. In this study, quantitative models for UT thickness measurement deviations of nuclear pipes and fittings were developed as the first step for establishing an optimized thinning evaluation procedure considering measurement error. In order to understand the characteristics of UT thickness measurement errors of nuclear pipes and fittings, round robin test results, which were obtained by previous researchers under laboratory conditions, were analyzed. Then, based on a large dataset of actual plant data from four NPPs, a quantitative model for UT thickness measurement deviation is proposed for plant conditions.

초음파(超音波)를 이용(利用)한 박막(薄膜)두께 측정(測定)에 관(關)한 연구(硏究) (A Study on the Thickness Measurement of Thin Film by Ultrasonic Wave)

  • 한응교;이재준;김재열
    • 비파괴검사학회지
    • /
    • 제7권2호
    • /
    • pp.27-34
    • /
    • 1988
  • Recently, it is gradually raised necessity that thickness of thin film is measured accurately and managed in industrial circles and medical world. In this study, regarding to the thickness of film which is in opaque object and is beyond distance resolution capacity, thickness measurement was done by MEM-cepstrum analysis of received ultrasonic wave. In measurement results, film thickness which is beyond distance resolution capacity was measured accurately. And within thickness range that don't exist interference, thickness measurement by MEM-ceptrum analysis was impossible.

  • PDF

Soft Tissue Measurement Method Using Radiopaque Material on Cone-beam Computed Tomography: An Ex Vivo Validation Study

  • Lee, Hae-Seok;Yun, Jeong-Ho;Lee, Dong-Won
    • 대한구강악안면임플란트학회지
    • /
    • 제22권4호
    • /
    • pp.210-218
    • /
    • 2018
  • Purpose: The purpose of this study was to investigate the validity and reproducibility of a method based on cone-beam computed tomography (CBCT) technology for the visualization and measurement of gingival soft-tissue dimensions. Material and Methods: A total of 66 selected points in soft-tissue of the ex vivo head of an adult pig were investigated in this study. For the measurement of radiographic thickness (RT), wet soft-tissue surfaces were lightly covered with barium sulfate powder using a powder spray. CBCT was taken and DICOM files were assessed for soft-tissue thickness measurement at reference points. A periodontal probe and a rubber stop were used for the measurement of trans-gingival probing thickness (TPT). After flap elevation, actual thickness of soft-tissue (actual thickness, AT) was measured. Correlation analysis and intraclass correlation coefficients analysis (ICC) were performed for AT, TPT, and RT. Results: All variables were distributed normally. Strong significant correlations of AT with RT and TPT values were found. The two ICC values between TPT vs. AT and RT vs. AT differed significantly. Conclusion: Our results indicated that correlation of RT was stronger than that of TPT with AT. We concluded that soft tissue measurement with CBCT could be a reliable method, compared to the trans-gingival probing measurement method.

Effects of Plank Exercises with Resistance of One-Sided Hip Adduction on the Abdominal Muscle Thickness

  • Park, JaeCheol;Jeong, JinGyu
    • The Journal of Korean Physical Therapy
    • /
    • 제31권2호
    • /
    • pp.82-87
    • /
    • 2019
  • Purpose: The purpose of this study was to examine the effects of plank exercises with resistance of one-sided hip adduction on abdominal muscle thickness. Methods: Thirty subjects were divided into a group that underwent plank exercises with one-sided hip adduction resistance (n=15) and a group that underwent plank exercises only (n=15). Their changes in abdominal muscle thickness before the experiment (n=15) and three and six weeks after the experiment were analyzed using a two-way repeated analysis of variance at a statistical significance level of ${\alpha}=0.05$. When there was any interaction between the time of measurement and each group, post hoc t-tests were conducted at a statistical significance level of ${\alpha}=0.01$. Results: The results of the experiment showed statistically significant differences in the thickness of the rectus abdominis, internal oblique muscle, and transversus abdominis, depending on the time of measurement and the interaction between the time of measurement and each group (p<0.05). Statistically significant differences were observed in the thickness of the external oblique, depending on the time of measurement, the interaction between the time of measurement and each group, and variances between the groups (p<0.05). Conclusion: The results of this study indicated that plank exercises with resistance of one-sided adduction are effective for increasing abdominal muscle thickness. The study's overall findings will likely be used as basic data for lumbar stabilization exercises and rehabilitation treatment.

Intra- and inter-rater reliability of muscle thickness measurement of the tibialis anterior using different inward pressures

  • Lee, Seong-Joo;Lim, Ji Young;Lee, Chang-Hyung;Park, Dae-Sung
    • Physical Therapy Rehabilitation Science
    • /
    • 제8권4호
    • /
    • pp.218-224
    • /
    • 2019
  • Objective: This reliability study examined the effects of applying varying induced inward pressures using a transducer placed at 0° neutral ankle position (NEU) and 15° ankle dorsiflexion (DF) on tibialis anterior (TA) muscle thickness using a custom-made device with a force indicator during rehabilitative ultrasound imaging. Design: Cross-sectional study. Methods: Twenty-four healthy subjects were recruited in this study. Two examiners measured the muscle thickness of the TA at 0° NEU and 15° DF in 3 conditions of inward pressures (1.0 N, 2.0 N, and 4.0 N) using a custom-made holder. The muscle thickness was measured three times for each of the conditions arranged in random order. For intra- and inter-rater reliability, the intraclass correlation coefficients (ICCs) with 95% confidence intervals, standard error of measurement, minimal detectable change, and coefficient of variation were analyzed. One-way repeated measures analysis of variance was conducted for investigating changes of TA muscle thickness according to the inward pressures of the transducers. Results: The intra-rater reliability of TA muscle thickness measurement was excellent (ICC3,1: 0.92-0.96) for all conditions (at both ankle joint angles per varying inward pressure). Likewise, the inter-rater reliability of TA muscle thickness measurement was excellent (ICC2,1: 0.89-0.97) under same conditions. The mean of TA thickness showed the trend of decreasing significantly with increased inward pressures at all ankle joint angles (p<0.05). Conclusions: Use of this custom-made device with a force indicator is useful to accomplish the high intra- and inter-rater reliability of TA muscle thickness measurement at both ankle joint angles in reducing the measurement error.

Analysis of pipe thickness reduction according to pH in FAC facility with In situ ultrasonic measurement real time monitoring

  • Oh, Se-Beom;Kim, Jongbeom;Lee, Jong-Yeon;Kim, Dong-Jin;Kim, Kyung-Mo
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.186-192
    • /
    • 2022
  • Flow accelerated corrosion (FAC) is a type of pipe corrosion in which the pipe thickness decreases depending on the fluid flow conditions. In nuclear power plants, FAC mainly occurs in the carbon steel pipes of a secondary system. However, because the temperature of a secondary system pipe is over 150 ℃, in situ monitoring using a conventional ultrasonic non-destructive testing method is difficult. In our previous study, we developed a waveguide ultrasonic thickness measurement system. In this study, we applied a waveguide ultrasonic thickness measurement system to monitor the thinning of the pipe according to the change in pH. The Korea Atomic Energy Research Institute installed FAC-proof facilities, enabling the monitoring of internal fluid flow conditions, which were fixed for ~1000 h to analyze the effect of the pH. The measurement system operated without failure for ~3000 h and the pipe thickness was found to be reduced by ~10% at pH 9 compared to that at pH 7. The thickness of the pipe was measured using a microscope after the experiment, and the reliability of the system was confirmed with less than 1% error. This technology is expected to also be applicable to the thickness-reduction monitoring of other high-temperature materials.