• 제목/요약/키워드: Mean value theorem

검색결과 25건 처리시간 0.023초

퍼지 바운드 사이의 실사상의 적분의 유사평균치정리 (LIKELY MEAN VALUE THEOREM OF INTEGRALS OF REAL MAPPING BETWEEN FUZZY BOUNDS)

  • 손미정;권영철;박동근
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1995년도 추계학술대회 학술발표 논문집
    • /
    • pp.366-368
    • /
    • 1995
  • We study likely mean value theorem with respect to integral of real mapping between fuzzy bound. This is the main purpose of this paper, which investigates ideas in Dubois & Prade [2,3,4]

  • PDF

A STUDY OF THE RIGHT LOCAL GENERAL TRUNCATED M-FRACTIONAL DERIVATIVE

  • Chauhan, Rajendrakumar B.;Chudasama, Meera H.
    • 대한수학회논문집
    • /
    • 제37권2호
    • /
    • pp.503-520
    • /
    • 2022
  • We introduce a new type of fractional derivative, which we call as the right local general truncated M-fractional derivative for α-differentiable functions that generalizes the fractional derivative type introduced by Anastassiou. This newly defined operator generalizes the standard properties and results of the integer order calculus viz. the Rolle's theorem, the mean value theorem and its extension, inverse property, the fundamental theorem of calculus and the theorem of integration by parts. Then we represent a relation of the newly defined fractional derivative with known fractional derivative and in context with this derivative a physical problem, Kirchoff's voltage law, is generalized. Also, the importance of this newly defined operator with respect to the flexibility in the parametric values is described via the comparison of the solutions in the graphs using MATLAB software.

ACCESS TO LAPLACE TRANSFORM OF fg

  • HWAJOON KIM;SOMCHAI LEKCHAROEN
    • Journal of applied mathematics & informatics
    • /
    • 제41권1호
    • /
    • pp.83-93
    • /
    • 2023
  • We would like to consider Laplace transform of the form of fg, the form of product, and applies it to Burger's equation in general case. This topic has not yet been addressed, and the methodology of this article is done by considerations with respect to several approaches about the transform of the form of f g and the mean value theorem for integrals. This paper has meaning in that the integral transform method is applied to solving nonlinear equations.

ON THE HYBRID MEAN VALUE OF GENERALIZED DEDEKIND SUMS, GENERALIZED HARDY SUMS AND KLOOSTERMAN SUMS

  • Qing Tian;Yan Wang
    • 대한수학회보
    • /
    • 제60권3호
    • /
    • pp.611-622
    • /
    • 2023
  • The main purpose of this paper is to study the hybrid mean value problem involving generalized Dedekind sums, generalized Hardy sums and Kloosterman sums. Some exact computational formulas are given by using the properties of Gauss sums and the mean value theorem of the Dirichlet L-function. A result of W. Peng and T. P. Zhang [12] is extended. The new results avoid the restriction that q is a prime.

평균치 정리를 이용한 진리층관측도 변환 알고리즘에 관한 연구 (A Study on the Ionogram Inversion Algorithm Using Mean Value Theorem)

  • 박형래;채종석;이혁재
    • 대한전자공학회논문지
    • /
    • 제24권2호
    • /
    • pp.201-206
    • /
    • 1987
  • A description of ionogram inversion algorithm developed for obtaining ionospheric electron density profile from ionospheric sounding datas (ionograms) in real time using mean value theorem is given and the methods for determining starting points and correcting valley effects are considered. The results derived from this algorithm are compared with the theoretically simulated datas, and the real electron density profiles from the measured ionograms taken at Radio research Laboratory in Korea are given to show its practical use.

  • PDF

MEAN-VALUE PROPERTY AND CHARACTERIZATIONS OF SOME ELEMENTARY FUNCTIONS

  • Matkowski, Janusz
    • 대한수학회보
    • /
    • 제50권1호
    • /
    • pp.263-273
    • /
    • 2013
  • A mean-value result, saying that the difference quotient of a differentiable function in a real interval is a mean value of its derivatives at the endpoints of the interval, leads to the functional equation $$\frac{f(x)-F(y)}{x-y}=M(g(x),\;G(y)),\;x{\neq}y$$, where M is a given mean and $f$, F, $g$, G are the unknown functions. Solving this equation for the arithmetic, geometric and harmonic means, we obtain, respectively, characterizations of square polynomials, homographic and square-root functions. A new criterion of the monotonicity of a real function is presented.

Likely Mean Value Theorem

  • Choi, J.R.;Ha, H.Y.;Kwun, Y.C.;Nam, H.I.
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1997년도 춘계학술대회 학술발표 논문집
    • /
    • pp.37-42
    • /
    • 1997
  • PDF

A NEW MEAN VALUE RELATED TO D. H. LEHMER'S PROBLEM AND KLOOSTERMAN SUMS

  • Han, Di;Zhang, Wenpeng
    • 대한수학회보
    • /
    • 제52권1호
    • /
    • pp.35-43
    • /
    • 2015
  • Let q > 1 be an odd integer and c be a fixed integer with (c, q) = 1. For each integer a with $1{\leq}a{\leq}q-1$, it is clear that the exists one and only one b with $0{\leq}b{\leq}q-1$ such that $ab{\equiv}c$ (mod q). Let N(c, q) denote the number of all solutions of the congruence equation $ab{\equiv}c$ (mod q) for $1{\leq}a$, $b{\leq}q-1$ in which a and $\bar{b}$ are of opposite parity, where $\bar{b}$ is defined by the congruence equation $b\bar{b}{\equiv}1$ (modq). The main purpose of this paper is using the mean value theorem of Dirichlet L-functions to study the mean value properties of a summation involving $(N(c,q)-\frac{1}{2}{\phi}(q))$ and Kloosterman sums, and give a sharper asymptotic formula for it.