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Likely Mean Value Theorem

J.R. Choi* H. Y. Hal Y. C. Kwun* and H. I. Nam*

I. Introduction

In this paper, we study the likely mean value theorem with respect to the integral of fuzzy
mapping between fuzzy bounds. The ideas of integration of fuzzy mappings are investigated

in [1], [2], [3] and [4]
II. Definitions and Main Results

A fuzzy domain D of the real line R is assumed to be delimited by two fuzzy bounds é

and b in the following sense:
(1) @ and b are fuzzy sets on R, whose membership functions are uz and ; from R to
[0, 1].

(2) For all x € R, pa(z) (resp. p;(z)) evaluates to what extent = can be considered as a

greatest lower bound(resp. least upper bound) of D.

(3) @ and b are normalized, i. e., there exists

a,be R, such that pa(a) =1 = pz(b).
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(4) @ and b are convex fuzzy sets, i.e., for any a € (0, 1] their a—cut @, and b, are intervals.

D is denoted by (&, b) : @ and b are assumed to be ordered in the sense that
ag = inf S(&@) < sup S(b) = by

where
5(a) = {zlpa(z) > 0}

is the support of @ ([3]).

Definition 1. ([4]) A fuzzy number A in the real line R is the fuzzy set characterized by
a membership function p; : R — [0, 1]. A fuzzy number Ais expressed as A = Jeer1i(T)/2,
with the understanding that p;(x) € [0, 1] represents the grade of membership of z in A

and [ denotes the union of y;(x)/z’s.

Definition 2. ([4]) fuzzy number A in R is said to be convex if for any real numbers
z,y, 2z €Rwithz <y <z paly) > pa(z) Apa(z), where A standing for minimum. A fuzzy
number A is called normal if the following max, p4(z) = 1 holds. A fuzzy number which is

normal and convex is referred to normal convex fuzzy number.

Remark. Let @ and b be normal convex fuzzy number with the bounded support. &
and b be assumed to be ordered in the sense that ag = inf S(@) < sup S(b) = by, where
S(@) = {x|us(x) > 0} is the support of G. Then (&, b) satisfies the definition of fuzzy

domain.

Definition 3. ([5]) Let A and B be fuzzy numbers. The membership function of their

extended substraction A © B is defined by p joB(2) = sup,_,_, min(u;(x), ug(y))-

Definition 4. ([2]) Let f be a real-valued real mapping, supposedly integrable on the
interval I = [inf S(A), sup S(B)];then the integral of f over the domain delimited by the



fuzzy bounds A and B, denoted by f p [, is defined according to extension principle by

"zeR, puy ((z) = sup min(ka(), p5(v))
D Tyl
under the constraint z = [¥ f, where [” f is short for [ f(s)ds.

Jp f will also be denoted by f: f

Definition 5. ([3]) A fuzzy point ¢ is a convex subset of the real line R and its mem-

bership function is defined by

Yo,y >z, 'z € [z, y], pe(z) > min(ua(z), pa(y))-

Theorem 1. (7)) Let @ and b be normal convex fuzzy numbers on R with the bounded
support and f be a real-valued mapping, supposedly integrable on the interval [inf S(&),

sup S(b)], then there exists a fuzzy point & satisfying

b
f Ms§ﬂa@9&%
where

S(¢) ¢ [inf S(&), sup S(b)].

Definition 6.([2]) LR-fuzzy mapping is a fuzzy mapping f such that f(u) is an LR-type
fuzzy number for all u,i. e. 3L, R: R* — [0, 1], ¢ : ] — R, a, b mappings from I to R*

L (%) v < p(u),

such that:

Vu, Ha(u) (’U) =
v — p(u) v
_— >
R(gt)  ezew
where L and R be such that L{0) = R(0) = 1, L(1) = R(1) — 0 and decreasing, a and b

positive mappings. L and R be called reference mappings, a and b spread mappings, ¢ is



the strong mapping of f : it is a 1-curve. f is also denoted
f = (‘P’ a, b)LR
and

F(u) = ((w), alu), b(w))zr

Theorem 2. Let @ and b be normal convex fuzzy numbers on R with the bounded
support and f be fuzzy mapping such that f(-) = M; fi(-) ® Mafo(-) ® - - - & My fn(-), where
M; is a LR-fuzzy number which is denoted by M; = (m;, m;, 7;)rr. If the real mapping f

is integrable on the interval [inf S(@), sup S(b)], then there exists a fuzzy point ¢ satisfying
B -~ ~ ~
[ Fciotea,
where S(é) C [inf S(@), sup S(b)].

PROOF. Since

fO) = Mifil-) ® Mo fo(-) ® - -- ® Moful-),

‘/j‘f:Ml/agfl®M2/:f2®"‘@Mn/jfn.

By Theorem 1, there exist ¢;’s such that
5 ~
[ fzgfi(éz)(bed)a l:l, 2’ cee, N,
where S(&;) C [inf S(&), sup S(b)]. Thus we have
b b b b
[i-wm[rem [ po-oum 1
C Mifi(@)(b©a) & Mafo(&) (0O @) @ & Mofu(én) (bO @)

= j@kea).



Example 1. Let f(z) = M fi(z) ® My fo(z) ® Mafa(z), where fi(z) =1, fori=1, 2, 3.
73 3
M, = (‘Pl, ai, bl)LR = (5’ g’ Z)LR,

19 5 5
M2 - (‘P?: a3, b2)LR —- ('j" '8'7 Z)LR,

21 7 7
Ms= = (%, 5,5} .
and M3 = (y3, a3, b3)Lr (3 ' g 4)LR

Therefore,

i 4 4 4
[ f:M1[ dx@sz dz®M3[ dz
i i i i
C (Mié® Myé ® Myé)(do 1) (by Theorem 1)
= (M1 ® My ® M3)é(do 1)
= Médol)
=f®@el),

where M = (¢, a, b)Lr = (21, 1.875, 3.75)1z and S(¢) C [inf S(1), sup S(4)].

Theorem 3. If the fuzzy mappings f and § satisfy the conditions of theorem 2, then

/&E(f@g)g/:f@/;g

Theorem 4. Let f and g be either positive or negative real mappings. If the fuzzy

mappings f and § satisfy the conditions of theorem 2, then we have

[Gea=[Fa [

Theorem 5. Let D’ and (D”) be the domains of the real line R delimited by the fuzzy

bounds (&, &) and (¢, b), respectively. If f and § are fuzzy mappings, which satisfy the



conditions of theorem 2, then

fic [ fe [ 7

where D is delimited by (@, b). The equality holds if and only if ¢ is a real number.
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