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ACCESS TO LAPLACE TRANSFORM OF fg†

HWAJOON KIM AND SOMCHAI LEKCHAROEN∗

Abstract. We would like to consider Laplace transform of the form of
fg, the form of product, and applies it to Burger’s equation in general

case. This topic has not yet been addressed, and the methodology of this

article is done by considerations with respect to several approaches about
the transform of the form of fg and the mean value theorem for integrals.

This paper has meaning in that the integral transform method is applied

to solving nonlinear equations.
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1. Introduction

Theories on integral transforms provide a reasonable tool for solving differen-
tial equations[3]. Among these transforms, Laplace transform is recognized as
the most reasonable and easy to use due to its simplicity. The advantage of the
integral transform method is that it gives a simple tool which is represented by
an algebraic representation. Of course, these integral transforms are meaningful
not only in the given space, but also in the transformed space in itself. The
utility of integral transforms can be easily seen in computed tomography scan
or magnetic resonance imaging[14]. Normally, we obtain the projection data by
integral transform, and produce the image with the inverse transform[11].

To begin with, let us see the intrinsic structure of integral transforms. The
structure of it is of the form ∫ ∞

0

k(s, t)f(t)dt,
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and the Laplace transform has the kernel k(s, t) = e−st as we know already[15].
It is interesting that the kernel has the form of exponential function. It is con-
sidered that the reason is to use the property that the function decreases gently
and e−st converges to 0 when t approaches ∞. Since the Laplace transform can
be rewritten as ∫ ∞

0

e−
t
u f(t)dt

by s = 1/u, we can propose the general form of Laplace-typed transform by

uα

∫ ∞

0

e−
t
u f(t)dt

as a natural extension[11]. In this comprehensive form, the integer value can be
suitably selected in various problems. The value α = 0, −1 ,and 1 corresponds to
Laplace[15-16, 18], Sumudu[6, 19], and Elzaki transform[9, 12-13], respectively in
the above form. Of course, the integer value α can be extended to real value[17].

On the other hand, £(f)£(g) can be solved by £(f)£(g) = £(f ∗ g) for
f ∗ g is the convolution of f and g. However, £(fg) is pretty hard to deal
with. Therefore, we would like to cover this topic here. The main objective
of this paper is to approach with respect to Laplace transform of £(fg), and
this approach has an important value because it is a key issue in the transform
theory and the first attempt in this topic. According to the research results so
far, the integral transform method was not used to find the solutions of nonlinear
equations. This paper can be interpreted as a new attempt to break away from
this point of view.

The obtained results are as follows; There exists a point c ∈ (0,∞) such that

£(u · ux) =
1

s
u(x, c)ux(x, c) =

1

s
[(
u2

2
)x]t=c.

Moreover, if u ≥ 0, then there exists a point c such that

£(u · ux) = ux(x, c)£(u).

The latter can be generalized as £(fg) = g(c)£(f) on the condition that f and g
are integrable and f is non-negative. Additionally, £(u · ux) can be represented
as

1

s
(
u2

2
)x(x, 0) +

1

s
£[ d(

u2

2
)x],

−(
u2

2
)(0, t) + s£(

u2

2
),

1

s
(
u2

2
)x (0, t) +

1

s
£[d(

u2

2
)x],

−
∫ ∞

0

[{u(x, 0)}2/2]x dt+£[{u(x,∞)}2/2]x,
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or
1

s
u(x, 0)ux(x, 0) +

1

s
£[d (u · ux)]

for fx is the partial derivative with respect to x.

2. Access to Laplace transform of fg

We would like to approach Laplace transform of fg, £(fg), mainly £(u · ux)
for application.

Lemma 2.1. (Lagrange’s method[15]) Lagrange’s method states that a particular
solution yp of y′′ + p(x)y′ + q(x)y = r(x) on open interval I is

yp(x) = −y1

∫
y2r

W
dx+ y2

∫
y1r

W
dx

where y1, y2 form a basis of solutions of the corresponding homogeneous equation
y′′ + p(x)y′ + q(x)y = 0 on I, and W is the Wronskian of y1, y2.

Lemma 2.2. (Monotone convergence theorem(MCT)[2, 5]). Let M+ be the
collection of all non-negative measurable function and let µ be a measure. If
(fn) is a monotone increasing sequence of functions in M+ which converges to
f , then ∫

f dµ = lim

∫
fn dµ.

Let us put fn = g1+· · ·+gn and apply the MCT. Then we obtain the following
lemma.

Lemma 2.3. (Beppo Livi’s theorem[2]). Let (gn) be a sequence in M+, then∫ ∞∑
n=1

gn dµ =

∞∑
n=1

∫
gn dµ.

Lemma 2.4. (The Mean Value Theorem for Integrals[1]). Let f be continuous
on an interval I = [a, b] and let p be integrable on I and such that p(x) ≥ 0 for
all x ∈ I. Then there exists a point c ∈ I such that∫ b

a

f(x)p(x) dx = f(c)

∫ b

a

p(x)dx.

Note that a continuous function on a closed bounded interval is integrable on
there.

Lemma 2.5. (The Mean Value Theorem for Double Integrals[1]) Let z = f(x, y)
be a continuous function on the closed, bounded, and connected subset D ⊆ D(f),
and let A be the positive area of D. Then there exists a point (x0, y0) ∈ D such
that ∫ ∫

D

f(x, y) dA = Af(x0, y0).
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Theorem 2.6.
∂

∂x
£(

un

n
) = £(un−1 · ux)

for an arbitrary integer n.

Proof.
∂

∂x
£(

un

n
) =

∫ ∞

0

e−st nun−1 ux/n dt

= £(un−1 · ux).

□

For example, if u = x2t2, then

∂

∂x
£(

u2

2
) =

1

2
£(4x3t4) = £(2x3t4)

and £(u · ux) = £(x2t2 · 2xt2) = £(2x3t4), and so

∂

∂x
£(

u2

2
) = £(u · ux).

Theorem 2.6 can be naturally rewritten as

∂

∂x
£(

n∑
k=1

uk

k
) = £(

n∑
k=1

uk−1 · ux)

for an arbitrary integer n.

Theorem 2.7. Let fx be the partial derivative with respect to x. Then

(A) £(u · ux) =
1

s
(
u2

2
)x(x, 0) +

1

s
£[ d(

u2

2
)x].

(B) £(u · ux) = −(
u2

2
)(0, t) + s£(

u2

2
).

(C) £(u · ux) =
1

s
(
u2

2
)x (0, t) +

1

s
£[d(

u2

2
)x].

(D) £(u · ux) = −
∫ ∞

0

[{u(x, 0)}2/2]x dt+£[{u(x,∞)}2/2]x.

(E) £(u · ux) =
1

s
u(x, 0)ux(x, 0) +

1

s
£[d (u · ux)]

Proof. (A) Let us consider two cases. First, let us only differentiate for t. Since

£(u · ux) = £{(u
2

2
)x} =

∫ ∞

0

e−st (
u2

2
)x dt,

integration of parts gives

£(u · ux) = −1

s
(
u2

2
)x e−st]∞0 +

1

s

∫ ∞

0

e−st · (u
2

2
)xt dt

=
1

s
(
u2

2
)x(x, 0) +

1

s
£(

u2

2
)xt.
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Next, if we differentiate for x and t, in a similar way, we have

£(u · ux) =
1

s
(
u2

2
)x(x, 0) +

1

s
£[(

u2

2
)xt + (

u2

2
)xx]

=
1

s
(
u2

2
)x(x, 0) +

1

s
£[ d(

u2

2
)x].

(B) Since
∫
A
f(x)dx =

∫
A
f(t)dt,

£(u · ux) = £{(u
2

2
)x} =

∫ ∞

0

e−sx (
u2

2
)x dx.

If we integrate with respect to x, we have

£{(u
2

2
)x} = e−sx · (u

2

2
)]∞0 + s

∫ ∞

0

e−sx (
u2

2
) dx

= −(
u2

2
)(0, t) + s£(

u2

2
).

(C) Doing integration by parts, if we change the form of the derivative, we
have

= −1

s
(
u2

2
)x e−st]∞0 +

1

s

∫ ∞

0

e−st · d[(u
2

2
)x] dx

=
1

s
(
u2

2
)x (0, t) +

1

s
£[d(

u2

2
)x],

where

£(u · ux) =

∫ ∞

0

e−sx (
u2

2
)x dx.

(D) If we take the form of a derivative as (u2/2)x in the process of integration
by parts, we have

£(u · ux) = [e−st

∫
(
u2

2
)x dt]∞0 + s

∫ ∞

0

e−st (

∫ ∞

0

(
u2

2
)x dt) dt

= −[

∫
(
u2

2
)x dt]t=0 + s£[

∫ ∞

0

(
u(x, t)

2

2
)x dt]

= −[

∫
(
u2

2
)x dt]t=0 + lim s£[

∫ t

0

(
u(x, τ)

2

2
)x dτ ]

as t → ∞. Thus,

£(u · ux) = −[

∫
(
u2

2
)x dt]t=0 + lim£[(

u(x, t)
2

2
)x]

= −[

∫
(
u2

2
)x dt]t=0 +£[{u(x,∞)}2/2]x.

In the proof of (D), we would like to check on two matters. One is the commu-
tativeness of lim and

∫
, the other is

£[

∫ t

0

(
u(x, τ)

2

2
)x dτ ] =

1

s
£[(

u(x, t)
2

2
)x].
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First, (u(x, t)
2
/2) is non-negative measurable, and so, by Beppo Levi’s theo-

rem(lemma 2.3), the commutativeness of lim and
∫

is valid[4, 10]. Note that
Beppo Levi’s theorem can be restated as the following;∫

lim
n→∞

n∑
k=1

gn dµ = lim
n→∞

n∑
k=1

∫
gn dµ = lim

n→∞

∫ n∑
k=1

gn dµ.

Second, let us put

g(t) =

∫ t

0

(
u(x, τ)

2

2
)x dτ.

Then g′(t) = (u(x, t)
2
/2)x, and so

£[(
u(x, t)

2

2
)x] = £(g′(t)) = s£(g(t))− g(0) = s£(g(t))

= s£[

∫ t

0

(
u(x, τ)

2

2
)x dτ ].

(E) By the simple calculation, we have

£(fg) =

∫ ∞

0

e−st fg dt

= −1

s
[e−st fg]∞0 +

1

s

∫ ∞

0

e−st(f ′g + fg′) dt

=
1

s
f(x, 0)g(x, 0) +

1

s
£[d (fg)].

By changing f to u and g to ux we get the result

1

s
u(x, 0)ux(x, 0) +

1

s
£[d (u · ux)].

□

In the above theorem, (C) shows that (x, 0) can be changed to (0, t) in the
first term of the right side of (A).

Theorem 2.8. (Laplace transform of u ·ux by means of mean value theorem for
integrals) There exists a point c ∈ (0,∞) such that

£(u · ux) =
1

s
u(x, c)ux(x, c) =

1

s
[(
u2

2
)x]t=c.

Moreover, if u ≥ 0, then there exists a point c such that

£(u · ux) = ux(x, c)£(u).
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Proof. For mean value theorem, the continuity of f is not important, but the
integrability of f . Since uux = (u2/2)x is integrable, and e−st is integrable and
non-negative, the following equality holds according to lemma 4. Hence, there
exists a point c ∈ (0,∞) such that

£(u · ux) =

∫ ∞

0

e−st (u · ux) dt

= u(x, c) ux(x, c) lim
h→∞

∫ h

0

e−st dt

= u(x, c) ux(x, c)£(1)

=
1

s
u(x, c) ux(x, c),

equivalently,

£(u · ux) =
1

s
[(
u2

2
)x]t=c.

In a similar fashion, there exists a point c in the given interval such that

£(u · ux) =

∫ ∞

0

(e−stux)u dt

ux(x, c)

∫ ∞

0

e−st u dt

= ux(x, c)£(u)

for u ≥ 0. □

For example, let us check an example of the latter. The latter can be gener-
alized as £(fg) = g(c)£(f) on the condition that f and g are integrable and f
is non-negative. Taking f(t) = t and g(t) = 1, we have

£(fg) = £(t) =
1

s2
= 1 · 1

s2
= 1(c)£(f) = g(c)£(f).

Similarly, if f(t) = t and g(t) = t2, then

£(fg) = £(t3) =
6

s4
=

6

s2
· 1

s2
= g(c)£(f) = c2£(f)

for c =
√
6/s. Note that the scope of this transform is [0,∞). These examples

show that there is an appropriate value c as a non-negative value.

On one hand, the solution of Burger’s equation[7] was obtained using the
Laplace transform in [8]. However, since it was done only if u(x, t) be considered
as a function of x, we would like to improve the proof and extend it to some
more general case.
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Theorem 2.9. (Burger’s equation) The solution u(x, t) = w−1(x, s) of the
Burger’s equation

ut + u · ux = ν · uxx (1)

can be obtained by

w(x, s) = A(s)e
√

s/v x +B(s)e−
√

s/v x +
1

2

√
v/s e

√
s/v x

∫
e−

√
s/v x r dx

−1

2

√
v/s e−

√
s/v x

∫
e
√

s/v x r dx, (2)

where u0 is a constant, u is a given velocity, ν is viscosity coefficient, and

r = s£(
u2

2
)− (

u2

2
)(0, t)− u(x, 0).

Proof. Taking the Laplace transform with respect to t on both sides and writing
w(x, s) = £[u(x, t)], we have

sw − u(x, 0)− (
u2

2
)(0, t) + s£(

u2

2
) = ν

∂2w

∂x2

by (B) of theorem 7. Organizing this equality, we have

ν
∂2w

∂x2
− sw = s£(

u2

2
)− (

u2

2
)(0, t)− u(x, 0). (3)

Let us put

r = s£(
u2

2
)− (

u2

2
)(0, t)− u(x, 0).

Then by Lagrange’s method(lemma 1), a solution of equation of (3) is

w(x, s) = A(s)e
√

s/v x +B(s)e−
√

s/v x + wp

for wp is a particular solution of the equation (3). Calculating the Wronskian

W of e
√

s/v x and e−
√

s/v x, we have

W = −2
√

s/v.

By Lagrange’s method, we have

wp = −e
√

s/v x

∫
e−

√
s/v x r

−2
√

s/v
dx+ e−

√
s/v x

∫
e
√

s/v x r

−2
√
s/v

dx

=
1

2

√
v/s e

√
s/v x

∫
e−

√
s/v x r dx− 1

2

√
v/s e−

√
s/v x

∫
e
√

s/v x r dx.

Thus a general solution of (3) is

w(x, s) = A(s)e
√

s/v x +B(s)e−
√

s/v x +
1

2

√
v/s e

√
s/v x

∫
e−

√
s/v x r dx

−1

2

√
v/s e−

√
s/v x

∫
e
√

s/v x r dx,
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where

r = s£(
u2

2
)− (

u2

2
)(0, t)− u(x, 0).

It is clear that the Laplace transform of the inviscid Burger’s equation(ν = 0)
has a form of

w(x, s) = −£(
u2

2
) +

1

s
(
u2

2
)(0, t) +

1

s
u(x, 0)

from (3). On the other hand, from (1), this equation can be represented by

du

dt
+ uux = 0.

Organizing this equation, we have

du

u
= −uxdt.

Thus

ln |u| = −
∫

ux dt+ c∗,

and so
u = ce−

∫
ux dt (c = ±ec∗).

Of course, if u > 0, then c = ec∗, and if u < 0, then c = −ec∗. □

Corollary 2.10. (Burger’s equation) From the perspective of the mean value
theorem for integrals, Laplace transform of the Burger’s equation

ut + u · ux = ν · uxx (2)

can be represented by

w(x, s) = A(s)e
√

s/v x +B(s)e−
√

s/v x +
1

2

√
v/s e

√
s/v x

∫
e−

√
s/v x r dx

−1

2

√
v/s e−

√
s/v x

∫
e
√

s/v x r dx,

where

r =
1

s
u(x, c)ux(x, c)− u(x, 0)

for some point c. In case of u > 0, the above r can be changed to

ux(x, c)£(u)− u(x, 0).

Proof. Taking Laplace transform with respect to t on both sides, writing w(x, s) =
£[u(x, t)], and applying the mean value theorem for integrals to the equation,
we obtain the result in a manner similar to theorem 2.9. □

Of course, the obtained research results can be naturally extended to the
generalized Laplace-type equation.
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