• Title/Summary/Keyword: Maximum gain

Search Result 959, Processing Time 0.032 seconds

The Gain Estimation of a Fabry-Perot Cavity (FPC) Antenna with a Finite Dimension

  • Kwon, Taek-Sun;Lee, Jae-Gon;Lee, Jeong-Hae
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.4
    • /
    • pp.241-243
    • /
    • 2017
  • In this paper, we have presented an equation for estimating the gain of a Fabry-Perot cavity (FPC) antenna with a finite dimension. When an FPC antenna has an infinite dimension and its height is half of a wavelength, the maximum gain of that FPC antenna can be obtained theoretically. If the FPC antenna does not have a dimension sufficient for multiple reflections between a partially reflective surface (PRS) and the ground, its gain must be less than that of an FPC antenna that has an infinite dimension. In addition, the gain of an FPC antenna increases as the dimension of a PRS increases and becomes saturated from a specific dimension. The specific dimension where the gain starts to saturate also gets larger as the reflection magnitude of the PRS becomes closer to one. Thus, it would be convenient to have a gain equation when considering the dimension of an FPC antenna in order to estimate the exact gain of the FPC antenna with a specific dimension. A gain versus the dimension of the FPC antenna for various reflection magnitudes of PRS has been simulated, and the modified gain equation is produced through the curve fitting of the full-wave simulation results. The resulting empirical gain equation of an FPC antenna whose PRS dimension is larger than $1.5{\lambda}_0$ has been obtained.

K-band MMIC Oscillator Design Using the PHEMT (PHEMT소자를 이용한 K-band MMIC 발진 설계)

  • 이지형;채연식;조희철;윤용순;이진구
    • Proceedings of the IEEK Conference
    • /
    • 2000.06b
    • /
    • pp.88-91
    • /
    • 2000
  • An MMIC oscillator operating at the 24.55 GHz has been designed using 0.2 ${\mu}{\textrm}{m}$AlGaAs/InGaAs/GaAs Pseudomorphic HEMT technology. The active device used in the oscillator design has a 0.2 ${\mu}{\textrm}{m}$ gate length PHEMT with 4$\times$80 ${\mu}{\textrm}{m}$ gate width. We obtained 4.08 dB of S$_{21}$ gain and 317 mS/mm of transconductance, and extrapolated unit current gain cut-off frequency (f$_{T}$) and maximum oscillation frequency (fmax) were 62 GHz and 120 GHz, respectively. The circuit are based on a series feedback and negative resistance topology. Microstrip line open stub is used to terminating. The oscillator circuits has designed for delivering maximum power to load and conjugated matching. The simulated small signal negative resistance was 50 Ω. We obtained 1.002 of loop gain and 0.0005$^{\circ}$angle from the simulation by HP libra 6.1. The layout for oscillator is 1.2$\times$1.8 $\textrm{mm}^2$.>.

  • PDF

An Accurate Small Signal Modeling of Cylindrical/Surrounded Gate MOSFET for High Frequency Applications

  • Ghosh, Pujarini;Haldar, Subhasis;Gupta, R.S.;Gupta, Mridula
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.4
    • /
    • pp.377-387
    • /
    • 2012
  • An intrinsic small signal equivalent circuit model of Cylindrical/Surrounded gate MOSFET is proposed. Admittance parameters of the device are extracted from circuit analysis and intrinsic circuit elements are presented in terms of real and imaginary parts of the admittance parameters. S parameters are then evaluated and justified with the simulated data extracted from 3D device simulation.

Z-Source Inverter (Z-Source 인버터)

  • Choi H.L.;Jung T.U.;Jeon J.G.;Yu Tao;Lee D.H.;Kang P. S.;Choi J.H.;Park S.J.
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.545-548
    • /
    • 2006
  • This paper presents control method of a Z-source inverter and their relationships of voltage boost versus modulation index. A maximum boost control is presented to produce the maximum voltage boost(or voltage gain)under a given modulation index. The control method, relationships of voltage gain versus modulation index, and voltage stress versus voltage gain are analyzed in detail and verified by experiment.

  • PDF

A Study for the Available Adjustment Range of Gain at P, PI Control for the Retarded Processes (시간지연을 갖는 제어대상에 대한 P, PI 제어의 유효 게인 조정 범위에 관한 연구)

  • 강인철;최순만;최재성
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.207-212
    • /
    • 2001
  • In this paper, a method to be able to decide the possible maximum gain of P, PI control for the retarded processes under stable condition is proposed. At first, adjustable parameter set causing stability limit are obtained based on the frequency domain condition which makes the roots of transfer function locate on the $j\omega$ axis. And the cut-in frequency $\omega{_p}$ to bring the parameter set to P control from PI control is derived by an equation with 2 parameters L and $T_m$ given, then $\omega{_p}$ is used to compute the maximum gain with stable condition. For the calculation, the controlled process of first order system with time delay element is introduced and all parameters are presumed to be time invariant.

  • PDF

Array Antenna Design for Ku-Band Terminal of L.E.O Satellite Communication

  • Kang, Seo;Kang, JeongJin;Rothwell, Edward J.
    • International journal of advanced smart convergence
    • /
    • v.11 no.4
    • /
    • pp.41-46
    • /
    • 2022
  • This study is a Ku-band array antenna for the manufacture of low-orbit satellite communication terminals, designed to have miniaturization, high gain, and wide beam width. The transmission of low-orbit satellite communication has a right-rotating circularly polarized wave, and the reception has a left-rotating circularly polarized wave. The 4×8 array antenna was separated for transmission and reception, and it was combined with the RF circuit part of the transmitter and receiver, and was terminated in the form of a waveguide for RF signal impedance matching in the form of a transition from the microstrip line to the waveguide. The 30° beam width of the receiver maximum gain of 19 dBi and the 29° beam width of the transmitter maximum gain of 18 dBi are shown. Through this antenna configuration, the system was configured to suit the low-orbit satellite transmission/reception characteristics.

Asymptotic Performance of ML Sequence Estimator Using an Array of Antennas for Coded Synchronous Multiuser DS-CDMA Systems

  • Kim, Sang G.;Byung K. Yi;Raymond Pickholtz
    • Journal of Communications and Networks
    • /
    • v.1 no.3
    • /
    • pp.182-188
    • /
    • 1999
  • The optimal joint maximum-likelihood sequence estima-for using an array of antennas is derived for synchronous direct sequence-code division multiple access (DS-CDMA) system. Each user employs a rate 1/n convolutional code for channel coding for the additive white Gaussian noise (AWGN) channel. The array re-ceiver structure is composed of beamformers in the users' direc-tions followed by a bank of matched filters. The decoder is imple-mented using a Viterbi algorithm whose states depend on the num-ber of users and the constraint length of the convolutional code. The asymptotic array multiuser coding gain(AAMCG)is defined to encompass the asymptotic multiuser coding gain and the spatial information on users' locations in the system. We derive the upper and lower bounds of the AAMCG. As an example, the upper and lower bounds of AAMCG are obtained for the two user case where each user employes the maximum free distance convolutional code with rate 1/2. The enar-far resistance property is also investigated considering the number of antenna elements and user separations in the space.

  • PDF

All-fiber Tm-Ho Codoped Laser Operating at 1700 nm

  • Park, Jaedeok;Ryu, Siheon;Yeom, Dong-Il
    • Current Optics and Photonics
    • /
    • v.2 no.4
    • /
    • pp.356-360
    • /
    • 2018
  • We demonstrate continuous-wave operation of an all-fiber thulium-holmium codoped laser operating at a wavelength of 1706.3 nm. To realize laser operation in the short-wavelength region of the emission-band edge of thulium in silica fiber, we employ fiber Bragg gratings having resonant reflection at a wavelength around 1700 nm as a wavelength-selective mirror in an all-fiber cavity scheme. We first examine the performance of the laser by adjusting the central wavelength of the in-band pump source. Although a pump source possessing a longer wavelength is observed to provide reduced laser threshold power and increased slope efficiency, because of the characteristics of spectral response in the gain fiber, we find that the optimal pump wavelength is 1565 nm to obtain maximum laser output power for a given system. We further explore the properties of the laser by varying the fiber gain length from 1 m to 1.4 m, for the purpose of power scaling. It is revealed that the laser shows optimal performance in terms of output power and slope efficiency at a gain length of 1.3 m, where we obtain a maximum output power of 249 mW for an applied pump power of 2.1 W. A maximum slope efficiency is also estimated to be 23% under these conditions.

Design and Implementation of RF Module Part for Radar Detector (레이더 탐지기용 RF 모듈단 설계 및 구현)

  • Roh, Hee-Chang;Park, Wook-Ki;Jo, Yun-Hyun;Oh, Taeck-Keun;Park, Hyo-Dal
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.5A
    • /
    • pp.519-527
    • /
    • 2010
  • In this paper, we design and implement a broadband LNA(Low Noise Amplifier), a mixer, and oscillators in RF module part for radar detector. For resolving the limitation of the conventional product that the sensitivity is low due to the poor gain flatness, we propose the architecture of RF module part. The proposed RF module part is composed with a broadband 2-stage LNA, a mixer, and three oscillators, and improves the maximum gain and gain flatness for detecting various frequencies. The overall performances of RF module part are above 38 dB conversion gain in whole band and 1 dB gain flatness. These results show that the maximum gain which is the problem of the conventional product is improved 6 dB from 35 dB to 41 dB, and gain flatness is also improved 17 dB from 22 dB to 5 dB.

A Study of the Gain Margin in Accordance with the PSS Inputs (PSS 입력신호에 따른 이득여유 연구)

  • Kim, Dong-Joon;Moon, Young-Hwan;Kim, Tae-Kyun;Shin, Jeong-Hoon;Kim, Yong-Hak
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1060-1062
    • /
    • 1999
  • This paper proposes a guideline of choosing the optimum stabilizer input considering the gain margin of power system stabilizer between the optimum stabilizer gain and the allowable maximum stabilizer gain in accordance with the five inputs, such as generator shaft speed, bus frequency, electrical power, accelerating power and bus terminal voltage. The local mode damping and exciter mode damping are considered with increasing the stabilizer gain to determine each gain margin of the inputs.

  • PDF