• Title/Summary/Keyword: Mathematical Uniqueness

Search Result 424, Processing Time 0.022 seconds

Fixed Point Theorems for Mixed Monotone Vector Operators with Application to Systems of Nonlinear Boundary Value Problems

  • Sadrati, Abdellatif;Aouragh, My Driss
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.3
    • /
    • pp.613-629
    • /
    • 2021
  • In this paper, we present and prove new existence and uniqueness fixed point theorems for vector operators having a mixed monotone property in partially ordered product Banach spaces. Our results extend and improve existing works on τ-φ-concave operators in the scalar case. As an application, we study the existence and uniqueness of positive solutions for systems of nonlinear Neumann boundary value problems.

STUDY OF BRÜCK CONJECTURE AND UNIQUENESS OF RATIONAL FUNCTION AND DIFFERENTIAL POLYNOMIAL OF A MEROMORPHIC FUNCTION

  • Pramanik, Dilip Chandra;Roy, Jayanta
    • Korean Journal of Mathematics
    • /
    • v.30 no.2
    • /
    • pp.249-261
    • /
    • 2022
  • Let f be a non-constant meromorphic function in the open complex plane ℂ. In this paper we prove under certain essential conditions that R(f) and P[f], rational function and differential polynomial of f respectively, share a small function of f and obtain a conclusion related to Brück conjecture. We give some examples in support to our result.

TOPOLOGICAL STABILITY OF INVERSE SHADOWING SYSTEMS

  • Lee, Keonhee;Lee, Joonhee
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.13 no.1
    • /
    • pp.53-63
    • /
    • 2000
  • The inverse shadowing property of a dynamical system is an "inverse" form of the shadowing property of the system. Recently, Kloeden and Ombach proved that if an expansive system on a compact manifold has the shadowing property then it has the inverse shadowing property. In this paper, we study topological stability of the inverse shadowing dynamical systems. In particular, we show that if an expansive system on a compact manifold has the inverse shadowing property then it is topologically stable, and so it has the shadowing property.

  • PDF

SOME RESULTS ON COMPLEX DIFFERENTIAL-DIFFERENCE ANALOGUE OF BRÜCK CONJECTURE

  • Chen, Min Feng;Gao, Zong Sheng
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.361-373
    • /
    • 2017
  • In this paper, we utilize the Nevanlinna theory and uniqueness theory of meromorphic function to investigate the differential-difference analogue of $Br{\ddot{u}}ck$ conjecture. In other words, we consider ${\Delta}_{\eta}f(z)=f(z+{\eta})-f(z)$ and f'(z) share one value or one small function, and then obtain the precise expression of transcendental entire function f(z) under certain conditions, where ${\eta}{\in}{\mathbb{C}}{\backslash}\{0\}$ is a constant such that $f(z+{\eta})-f(z){\not\equiv}0$.

EXISTENCE AND LARGE TIME BEHAVIOR OF SOLUTIONS TO A FOURTH-ORDER DEGENERATE PARABOLIC EQUATION

  • LIANG, BO;WANG, MEISHAN;WANG, YING
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.4
    • /
    • pp.1059-1068
    • /
    • 2015
  • The paper is devoted to studying a fourth-order degenerate parabolic equation, which arises in fluid, phase transformation and biology. Based on the existence and uniqueness of one semi-discrete problem, two types of approximate solutions are introduced. By establishing some necessary uniform estimates for those approximate solutions, the existence and uniqueness of the corresponding parabolic problem are obtained. Moreover, the long time asymptotic behavior is established by the entropy functional method.

SINGULAR SOLUTIONS OF SEMILINEAR PARABOLIC EQUATIONS IN SEVERAL SPACE DIMENSIONS

  • Baek, Jeong-Seon;Kwak, Min-Kyu
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.1049-1064
    • /
    • 1997
  • We study the existence and uniqueness of nonnegative singular solution u(x,t) of the semilinear parabolic equation $$ u_t = \Delta u - a \cdot \nabla(u^q) = u^p, $$ defined in the whole space $R^N$ for t > 0, with initial data $M\delta(x)$, a Dirac mass, with M > 0. The exponents p,q are larger than 1 and the direction vector a is assumed to be constant. We here show that a unique singular solution exists for every M > 0 if and only if 1 < q < (N + 1)/(N - 1) and 1 < p < 1 + $(2q^*)$/(N + 1), where $q^* = max{q, (N + 1)/N}$. This result agrees with the earlier one for N = 1. In the proof of this result, we also show that a unique singular solution of a diffusion-convection equation without absorption, $$ u_t = \Delta u - a \cdot \nabla(u^q), $$ exists if and only if 1 < q < (N + 1)/(N - 1).

  • PDF

MONOTONE GENERALIZED CONTRACTIONS IN ORDERED METRIC SPACES

  • Alam, Aftab;Imdad, Mohammad
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.1
    • /
    • pp.61-81
    • /
    • 2016
  • In this paper, we prove some existence and uniqueness results on coincidence points for g-monotone mappings satisfying linear as well as generalized nonlinear contractivity conditions in ordered metric spaces. Our results generalize and extend two classical and well known results due to Ran and Reurings (Proc. Amer. Math. Soc. 132 (2004), no. 5, 1435-1443) and Nieto and $Rodr{\acute{i}}guez$-$L{\acute{o}}pez$ (Acta Math. Sin. 23 (2007), no. 12, 2205-2212) besides similar other ones. Finally, as an application of one of our newly proved results, we establish the existence and uniqueness of solution of a first order periodic boundary value problem.

NONLOCAL BOUNDARY VALUE PROBLEMS FOR HILFER FRACTIONAL DIFFERENTIAL EQUATIONS

  • Asawasamrit, Suphawat;Kijjathanakorn, Atthapol;Ntouyas, Sotiris K.;Tariboon, Jessada
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.6
    • /
    • pp.1639-1657
    • /
    • 2018
  • In this paper, we initiate the study of boundary value problems involving Hilfer fractional derivatives. Several new existence and uniqueness results are obtained by using a variety of fixed point theorems. Examples illustrating our results are also presented.

ON SOLVABILITY AND ALGORITHM OF GENERAL STRONGLY NONLINEAR VARIATIONAL-LIKE INEQUALITIES

  • Liu Zeqing;Sun, Juhe;Shim, Soo-Hak;Kang, Shin-Min
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.2
    • /
    • pp.319-331
    • /
    • 2006
  • In this paper, a new class of general strongly nonlinear variational-like inequalities was introduced and studied. The existence and uniqueness of solutions and a new iterative algorithm for the general strongly nonlinear variational-like inequality are established and suggested, respectively. The convergence criteria of the iterative sequence generated by the iterative algorithm are also given.