DOI QR코드

DOI QR Code

ON SOLVABILITY AND ALGORITHM OF GENERAL STRONGLY NONLINEAR VARIATIONAL-LIKE INEQUALITIES

  • Liu Zeqing (DEPARTMENT OF MATHEMATICS, LIAONING NORMAL UNIVERSITY) ;
  • Sun, Juhe (DEPARTMENT OF MATHEMATICS, LIAONING NORMAL UNIVERSITY) ;
  • Shim, Soo-Hak (DEPARTMENT OF MATHEMATICS AND RESEARCH INSTITUTE OF NATURAL SCIENCE, GYEONGSANG NATIONAL UNIVERSITY) ;
  • Kang, Shin-Min (Department of Mathematics and Research Institute of Natural Science, Gyeongsang National University)
  • Published : 2006.05.01

Abstract

In this paper, a new class of general strongly nonlinear variational-like inequalities was introduced and studied. The existence and uniqueness of solutions and a new iterative algorithm for the general strongly nonlinear variational-like inequality are established and suggested, respectively. The convergence criteria of the iterative sequence generated by the iterative algorithm are also given.

Keywords

References

  1. S. S. Chang, Variational inequalitity and complementarity theory with applica- tions, Shanghai Sci. Technol., Shanghai (1991)
  2. S. S. Chang, On the existence of solutions for a class of quasi-bilinear variational inequalities, J. Sys. Sci. Math. Scis. 16 (1996), 136-140 [In Chinese]
  3. P. Cubiotti, Existence of solutions for lower semicontinuous quasi-equilibrium problems, Comput. Math. Appl. 30 (1995), no. 12, 11-22
  4. X. P. Ding, Algorithm of solutions for mixed nonlinear variational-like inequal- ities in reflexive Banach space, Appl. Math. Mech. 19 (1998), no. 6, 521-529 https://doi.org/10.1007/BF02453407
  5. X. P. Ding, Existence and algorithm of solutions for nonlinear mixed variational- like inequalities in Banach spaces, J. Comput. Appl. Math. 157 (2003), no. 2, 419-434 https://doi.org/10.1016/S0377-0427(03)00421-7
  6. X. P. Ding and K. K. Tan, A minimax inequality with applications to existence of equilibrium point and fixed point theorems, Colloq. Math. 63 (1992), no. 2, 233-247
  7. I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North- Holland, Amsterdam, Holland, 1976
  8. N. J. Huang and C. X. Deng, Auxiliary principle and iterative algorithms for generalized set-valued strongly nonlinear mixed variational-like inequalities, J. Math. Anal. Appl. 256 (2001), no. 2, 345-359 https://doi.org/10.1006/jmaa.2000.6988
  9. Z. Liu, J. S. Ume, and S. M. Kang, Nonlinear variational inequalities on reflexive Banach spaces and topological vector spaces, Int. J. Math. Math. Sci. 2003 (2003), no. 4, 199-207 https://doi.org/10.1155/S016117120320627X
  10. Z. Liu, L. Debnath, S. M. Kang, and J. S. Ume, Completely generalized multival- ued nonlinear quasi-variational inclusions, Int. J. Math. Math. Sci. 30 (2002), no. 10, 593-604 https://doi.org/10.1155/S0161171202108283
  11. Z. Liu, L. Debnath, S. M. Kang, and J. S. Ume, On the generalized nonlinear quasivariational inclusions, Acta. Math. Inform. Univ. Ostraviensis 11 (2003), no. 1, 81-90
  12. Z. Liu, L. Debnath, S. M. Kang, and J. S. Ume, Sensitivity analysis for parametric completely generalized nonlinear im- plicit quasivariational inclusions, J. Math. Anal. Appl. 277 (2003), no. 1, 142- 154 https://doi.org/10.1016/S0022-247X(02)00518-8
  13. Z. Liu, L. Debnath, S. M. Kang, and J. S. Ume, Generalized mixed quasivariational inclusions and generalized mixed resolvent equations for fuzzy mappings, Appl. Math. Comput. 149 (2004), no. 3, 879-891 https://doi.org/10.1016/S0096-3003(03)00192-9
  14. Z. Liu, S. M. Kang, and J. S. Ume, On general variational inclusions with noncompact valued mappings, Adv. Nonlinear Var. Inequal. 5 (2002), no. 2, 11-25
  15. Z. Liu, S. M. Kang, and J. S. Ume, Completely generalized multivalued strongly quasivariational inequali- ties, Publ. Math. Debrecen 62 (2003), no. 1-2, 187-204
  16. Z. Liu, S. M. Kang, and J. S. Ume, Generalized variational inclusions for fuzzy mappings, Adv. Nonlinear Var. Inequal. 6 (2003), no. 1, 31-40
  17. Z. Liu, S. M. Kang, and J. S. Ume, The solvability of a class of quasivariational inequalities, Adv. Nonlin- ear Var. Inequal. 6 (2003), no. 2, 69-78
  18. Z. Liu and S. M. Kang, Generalized multivalued nonlinear quasi-variational inclusions, Math. Nachr. 253 (2003), 45-54 https://doi.org/10.1002/mana.200310044
  19. Z. Liu and S. M. Kang, Convergence and stability of perturbed three-step iterative algorithm for completely generalized nonlinear quasivariational inequalities, Appl. Math. Comput. 149 (2004), no. 1, 245-258 https://doi.org/10.1016/S0096-3003(02)00944-X
  20. Z. Liu, J. S. Ume, and S. M. Kang, General strongly nonlinear quasivariational inequalities with relaxed Lipschitz and relaxed monotone mappings, J. Optim. Theory Appl. 114 (2002), no. 3, 639-656 https://doi.org/10.1023/A:1016079130417
  21. Z. Liu, J. S. Ume, and S. M. Kang, Resolvent equations technique for general variational inclusions, Proc. Japan Acad., Ser. A Math. Sci. 78 (2002), no. 10, 188-193
  22. Z. Liu, J. S. Ume, and S. M. Kang, Nonlinear variational inequalities on reflexive Banach spaces and topo- logical vector spaces, Int. J. Math. Math. Sci. 2003 (2003), no. 4, 199-207 https://doi.org/10.1155/S016117120320627X
  23. Z. Liu, J. S. Ume, and S. M. Kang, Completely generalized quasivariational inequalities, Adv. Nonlinear Var. Inequal. 7 (2004), no. 1, 35-46
  24. P. D. Panagiotopoulos and G. E. Stavroulakis, New types of variational prin- ciples based on the notion of quasidifferentiability, Acta Mech. 94 (1992), no. 3-4, 171-194 https://doi.org/10.1007/BF01176649
  25. J. Parida and A. Sen, A variational-like inequality for multifunctions with ap- plications, J. Math. Anal. Appl. 124 (1987), no. 1, 73-81 https://doi.org/10.1016/0022-247X(87)90025-4
  26. G. Tian, Generalized quasi-variational-like inequality problem, Math. Oper. Res. 18 (1993), no. 3, 752-764 https://doi.org/10.1287/moor.18.3.752
  27. R. U. Verma, On generalized variational inequalities involving relaxed Lipschitz and relaxed monotone operators, J. Math. Anal. Appl. 213 (1997), no. 1, 387- 392 https://doi.org/10.1006/jmaa.1997.5556
  28. R. U. Verma, Generalized variational inequalities and associated nonlinear equations, Czechoslovak Math. J. 48 (1998), no. 3, 413-418 https://doi.org/10.1023/A:1022467525714
  29. R. U. Verma, Generalized pseudo-contractions and nonlinear variational inequalities, Publ. Math. Debrecen 53 (1998), no. 1-2, 23-28
  30. R. U. Verma, The solvability of a class of generalized nonlinear variational inequali- ties based on an iterative algorithm, Appl. Math. Lett. 12 (1999), no. 4, 51-53
  31. R. U. Verma, A general iterative algorithm and solvability of nonlinear quasivaria- tional inequalities, Adv. Nonlinear Var. Inequal. 4 (2001), no. 2, 79-87
  32. J. C. Yao, Existence of generalized variational inequalities, Oper. Res. Lett. 15 (1994), no. 1, 35-40 https://doi.org/10.1016/0167-6377(94)90008-6
  33. J. C. Yao, The generalized quasi-variational inequality problem with applications, J. Math. Anal. Appl. 158 (1991), no. 1, 139-160 https://doi.org/10.1016/0022-247X(91)90273-3