References
- S. S. Chang, Variational inequalitity and complementarity theory with applica- tions, Shanghai Sci. Technol., Shanghai (1991)
- S. S. Chang, On the existence of solutions for a class of quasi-bilinear variational inequalities, J. Sys. Sci. Math. Scis. 16 (1996), 136-140 [In Chinese]
- P. Cubiotti, Existence of solutions for lower semicontinuous quasi-equilibrium problems, Comput. Math. Appl. 30 (1995), no. 12, 11-22
- X. P. Ding, Algorithm of solutions for mixed nonlinear variational-like inequal- ities in reflexive Banach space, Appl. Math. Mech. 19 (1998), no. 6, 521-529 https://doi.org/10.1007/BF02453407
- X. P. Ding, Existence and algorithm of solutions for nonlinear mixed variational- like inequalities in Banach spaces, J. Comput. Appl. Math. 157 (2003), no. 2, 419-434 https://doi.org/10.1016/S0377-0427(03)00421-7
- X. P. Ding and K. K. Tan, A minimax inequality with applications to existence of equilibrium point and fixed point theorems, Colloq. Math. 63 (1992), no. 2, 233-247
- I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North- Holland, Amsterdam, Holland, 1976
- N. J. Huang and C. X. Deng, Auxiliary principle and iterative algorithms for generalized set-valued strongly nonlinear mixed variational-like inequalities, J. Math. Anal. Appl. 256 (2001), no. 2, 345-359 https://doi.org/10.1006/jmaa.2000.6988
- Z. Liu, J. S. Ume, and S. M. Kang, Nonlinear variational inequalities on reflexive Banach spaces and topological vector spaces, Int. J. Math. Math. Sci. 2003 (2003), no. 4, 199-207 https://doi.org/10.1155/S016117120320627X
- Z. Liu, L. Debnath, S. M. Kang, and J. S. Ume, Completely generalized multival- ued nonlinear quasi-variational inclusions, Int. J. Math. Math. Sci. 30 (2002), no. 10, 593-604 https://doi.org/10.1155/S0161171202108283
- Z. Liu, L. Debnath, S. M. Kang, and J. S. Ume, On the generalized nonlinear quasivariational inclusions, Acta. Math. Inform. Univ. Ostraviensis 11 (2003), no. 1, 81-90
- Z. Liu, L. Debnath, S. M. Kang, and J. S. Ume, Sensitivity analysis for parametric completely generalized nonlinear im- plicit quasivariational inclusions, J. Math. Anal. Appl. 277 (2003), no. 1, 142- 154 https://doi.org/10.1016/S0022-247X(02)00518-8
- Z. Liu, L. Debnath, S. M. Kang, and J. S. Ume, Generalized mixed quasivariational inclusions and generalized mixed resolvent equations for fuzzy mappings, Appl. Math. Comput. 149 (2004), no. 3, 879-891 https://doi.org/10.1016/S0096-3003(03)00192-9
- Z. Liu, S. M. Kang, and J. S. Ume, On general variational inclusions with noncompact valued mappings, Adv. Nonlinear Var. Inequal. 5 (2002), no. 2, 11-25
- Z. Liu, S. M. Kang, and J. S. Ume, Completely generalized multivalued strongly quasivariational inequali- ties, Publ. Math. Debrecen 62 (2003), no. 1-2, 187-204
- Z. Liu, S. M. Kang, and J. S. Ume, Generalized variational inclusions for fuzzy mappings, Adv. Nonlinear Var. Inequal. 6 (2003), no. 1, 31-40
- Z. Liu, S. M. Kang, and J. S. Ume, The solvability of a class of quasivariational inequalities, Adv. Nonlin- ear Var. Inequal. 6 (2003), no. 2, 69-78
- Z. Liu and S. M. Kang, Generalized multivalued nonlinear quasi-variational inclusions, Math. Nachr. 253 (2003), 45-54 https://doi.org/10.1002/mana.200310044
- Z. Liu and S. M. Kang, Convergence and stability of perturbed three-step iterative algorithm for completely generalized nonlinear quasivariational inequalities, Appl. Math. Comput. 149 (2004), no. 1, 245-258 https://doi.org/10.1016/S0096-3003(02)00944-X
- Z. Liu, J. S. Ume, and S. M. Kang, General strongly nonlinear quasivariational inequalities with relaxed Lipschitz and relaxed monotone mappings, J. Optim. Theory Appl. 114 (2002), no. 3, 639-656 https://doi.org/10.1023/A:1016079130417
- Z. Liu, J. S. Ume, and S. M. Kang, Resolvent equations technique for general variational inclusions, Proc. Japan Acad., Ser. A Math. Sci. 78 (2002), no. 10, 188-193
- Z. Liu, J. S. Ume, and S. M. Kang, Nonlinear variational inequalities on reflexive Banach spaces and topo- logical vector spaces, Int. J. Math. Math. Sci. 2003 (2003), no. 4, 199-207 https://doi.org/10.1155/S016117120320627X
- Z. Liu, J. S. Ume, and S. M. Kang, Completely generalized quasivariational inequalities, Adv. Nonlinear Var. Inequal. 7 (2004), no. 1, 35-46
- P. D. Panagiotopoulos and G. E. Stavroulakis, New types of variational prin- ciples based on the notion of quasidifferentiability, Acta Mech. 94 (1992), no. 3-4, 171-194 https://doi.org/10.1007/BF01176649
- J. Parida and A. Sen, A variational-like inequality for multifunctions with ap- plications, J. Math. Anal. Appl. 124 (1987), no. 1, 73-81 https://doi.org/10.1016/0022-247X(87)90025-4
- G. Tian, Generalized quasi-variational-like inequality problem, Math. Oper. Res. 18 (1993), no. 3, 752-764 https://doi.org/10.1287/moor.18.3.752
- R. U. Verma, On generalized variational inequalities involving relaxed Lipschitz and relaxed monotone operators, J. Math. Anal. Appl. 213 (1997), no. 1, 387- 392 https://doi.org/10.1006/jmaa.1997.5556
- R. U. Verma, Generalized variational inequalities and associated nonlinear equations, Czechoslovak Math. J. 48 (1998), no. 3, 413-418 https://doi.org/10.1023/A:1022467525714
- R. U. Verma, Generalized pseudo-contractions and nonlinear variational inequalities, Publ. Math. Debrecen 53 (1998), no. 1-2, 23-28
- R. U. Verma, The solvability of a class of generalized nonlinear variational inequali- ties based on an iterative algorithm, Appl. Math. Lett. 12 (1999), no. 4, 51-53
- R. U. Verma, A general iterative algorithm and solvability of nonlinear quasivaria- tional inequalities, Adv. Nonlinear Var. Inequal. 4 (2001), no. 2, 79-87
- J. C. Yao, Existence of generalized variational inequalities, Oper. Res. Lett. 15 (1994), no. 1, 35-40 https://doi.org/10.1016/0167-6377(94)90008-6
- J. C. Yao, The generalized quasi-variational inequality problem with applications, J. Math. Anal. Appl. 158 (1991), no. 1, 139-160 https://doi.org/10.1016/0022-247X(91)90273-3