• Title/Summary/Keyword: Mass change

Search Result 2,469, Processing Time 0.031 seconds

Analysis of mass and location of proportional damping system using the change of eigenvectors (고유벡터의 변화량에 의한 비례감쇠구조물의 변경질량 및 그 위치 해석)

  • Lee, Jung-Youn
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.191-197
    • /
    • 2010
  • In spite of a large amount of previous research, detail study on modified mass in proportional damping system is not well understood. It is common to predict structural dynamic design parameters due to the change of mass, but to predict the amount of modified mass and the location where the mass is being modified are rarely found in previous literature. Such inverse problem required detail analytical study in order to understand structural modification in proportional damping system. This paper predicts the modified mass and the modified mass location in proportional damping system using sensitivity coefficients and iterative method. The sensitivity coefficients are obtained from the change of eigenvectors due to mass modification. This method is applied to a horizontal beam and three degree of freedoms system. To validate the predicted changing mass and its location, the obtained results are compared to the reanalysis result which shows good agreement.

Analysis of Mass Position Detection Using the Change of the Structural Dynamic Characteristics (동특성 변화로부터 구조물의 변경질량 위치 해석)

  • 이정윤
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.2
    • /
    • pp.120-126
    • /
    • 2004
  • This study proposed the analysis of mass position detection due to the change of the mass and strifeless of structure by using the original and modified dynamic characteristics. The method is applied to examples of the cantilevers beam and the 3 degrees of freedom system by modifying the mass. The predicted detection of the mass positions and magnitudes are in good agrement with the present study from the structural reanalysis using the modified mass.

Prediction of Structural Modified Design Parameter due to the Change of Dynamic Characteristic (동특성변화에 따른 구조물의 변경된 설계파라미터 예측)

  • 이정윤
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.191-196
    • /
    • 2004
  • This study proposed the analysis of mass position detection and modified stiffness due to the change of the mass and stiffness of structure by using the original and modified dynamic characteristics. The method is applied to examples of a cantilever and 3 degree of freedom by modifying the mass. The predicted detection of mass positions and magnitudes are in good agrement with these from the structural reanalysis using the modified mass.

  • PDF

Analysis of detection of mass position using the change of the structural dynamic characteristics (동특성 변화로부터 구조물의 변경질량 위치 해석)

  • 이정윤
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.209-213
    • /
    • 2002
  • This study proposed the analysis of mass position detection due to the change of the mass and stiffness of structure by using the original and modified dynamic characteristics. The method is applied to examples of a cantilever and 3 degree of freedom by modifying the mass. The predicted detection of mass positions and magnitudes are in good agreement with these from the structural reanalysis using the modified mass.

  • PDF

A Study on the Change of Mass in Flow Velocity Using Loss Resistane Test Method - Using Synthetic rubber system Repair material - (유실저항성 시험방법을 이용한 유속조건에서의 질량변화 추이 연구 합성고무계 보수재료를 중심으로-)

  • Park, So-Young;Jang, Bo;Kim, Soo-Yeon;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.127-128
    • /
    • 2017
  • Tests are conducted according to the ISO TS 16774, Part 3 standard for quality management of leakage repair materials used in cracks in underground concrete structures. These test methods are performed indirectly using a nonwoven fabric on a chalet containing leak repair materials. However, it is considered that it is appropriate to verify the resistance of the repair material, which is required to be applied directly to the cracks in the actual field and to exhibit the resistance of the flow velocity. In this study, mass change was measured by using nonwoven fabric and nonwoven fabric. As a result, both methods showed an increase in mass, which indicated that the maintenance material itself contained a large amount of water, and that the mass change occurred depending on the drying state. Also, depending on the use of nonwoven fabric, the error due to the indirect test could not be ruled out. Therefore, further verification is needed, and it is considered that the test for change of mass reduction measurement is necessary according to the drying time of other types of the same series.

  • PDF

Effects of Density Change and Cooling Rate on Heat Transfer and Thermal Stress During Vertical Solidification Process (수직응고 시스템에서 밀도차와 냉각률이 열전달 및 열응력에 미치는 영향)

  • 황기영;이진호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.1095-1101
    • /
    • 1995
  • Numerical analysis of vertical solidification process allowing solid-liquid density change is performed by a hybrid method between a winite volume method (FVM) and a finite element method (FEM). The investigation focuses on the influence of solid-liquid density change and cooling rates on the motion of solid-liquid interface, solidified mass fraction, temperatures and thermal stresses in the solid region. Due to the density change of pure aluminium, solid-liquid interface moves more slowly but the solidified mass fraction is larger. The cooling rate of the wall is shown to have a significant influence on the phase change heat transfer and thermal stresses, while the density change has a small influence on the motion of the interface, solidified mass fraction, temperature distributions and thermal stresses. As the cooling rate increases, the thermal stresses become higher at the early stage of a solidification process, but it has small influence on the final stresses as the steady state is reached.

A Study on Dynamic Behavior of Cantilever Pipe Conveying Fluid with Crack and Moving mass (II)-Focused on the Frequency Change- (크랙과 이동질량을 가진 유체유동 외팔 파이프의 동특성에 관한 연구(II)-진동수 변화를 중심으로-)

  • Son, In-Soo;Yoon, Han-Ik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1304-1313
    • /
    • 2004
  • In this paper a dynamic behavior of a cracked cantilever pipe conveying fluid with the moving mass is presented. It has the results focused on the frequency change. Based on the Euler-Bernouli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. When the velocity of the moving mass is constant, the influences of the crack severity, the position of the crack, the moving mass, and the coupling of these factors on the frequencies of the cantilever pipe are depicted.

Analysis of detection of mass position and modified stiffness using the change of the structural dynamic characteristics (구조물의 동특성 변화로부터 변경된 질량 및 강성 해석)

  • Lee, Jung-Youn;Oh, Jae-Eung
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.786-791
    • /
    • 2004
  • This study proposed the analysis of mass position detection and modified stiffness due to the change of the mass and stiffness of structure by using the original and modified dynamic characteristics. The method is applied to examples of a cantilever and 3 degree of freedom by modifying the mass. The predicted detection of mass positions and magnitudes are in good agreement with these from the structural reanalysis using the modified mass.

  • PDF

Vibration Analysis of Thick Plates with Concentrated Mass on Elastic Foundation (탄성지지된 집중질량을 갖는 변단면 후판의 진동해석)

  • Kim, Il-Jung;Oh, Soog-Kyoung;Lee, Yong-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.6 s.111
    • /
    • pp.609-618
    • /
    • 2006
  • This study is undertaken for the vibration analysis of tapered thick plate with concentrated mass on elastic foundation. The boundary condition of the plate is analyzed with the 4-sides simply supported and 4-fixed basis. This study find out the frequency following the change in size for each foundational variable on Pasternak foundation, one of the two-parameter elastic foundation parameter that considered the shear layer to the Winkler foundation parameter. The concentrated mass is applied with the consideration of mass of the entire plate, and the change of frequency is studies on each location with the consideration of reacting for the three locations for concentrated mass. And, in order to find out the change of frequency on the thickness of the plate, it considered tapered ratio that linearly changes depending on the length of the plate with the thickness of the plate in x-direction, and the tapered ratio has changes with 4 types ($\alpha$=0.25, 0, 5, 0.75, and 1.0). For the interpretation, the program using finite element method (F.E.M.) is used and the element coordination is used the 8-node serendipity element. Therefore, the purpose of this study is to find out the characteristics of plate vibration under the mechanica vibration or external vibration factor to facilitate as the basic data of the design to secure the stability.

The Study on Piezoresistance Change Ratio of Cantilever type Acceleration Sensor (압저항 가속도 센서의 압저항 변화율 분포도에 관한 연구)

  • 심재준;한근조;한동섭;이성욱;김태형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.186-189
    • /
    • 2004
  • Sensor used by semiconductor process produced an MAP sensor and applied to several industry. Among those sensors divided as transducer which convert physical quantity into electrical value, piezoresistive type sensor has been studied for the properties and sensitivity of piezoresistor. In this paper, the variation of seismic mass which have been functioned as actuator moving the cantilever beam analyzed the effect on distribution of resistance change ratio and supposed the optimal shape and position of piezoresistor. The resulting are following; According to the increment of seismic mass size, the value of resistance change ratio decreased caused by improve the stiffness. Y directional piezoresistor is formed in spot of 100 m apart from cantilever edge and length of that is 800$\mu$m. To increase the sensitivity, piezoresistor is made as n-type and x-direction.

  • PDF