Analysis of detection of mass position and modified stiffness using the change of the structural dynamic characteristics

†,

Jung Youn Lee, Jae-Eung Oh

Key	Words: Mass Matrix(), Stiffness Matrix(), Sensitivity Coefficient(),
	F.E.M() Dynamic Characteristics(), Inverse Problem()

Abstract

This study proposed the analysis of mass position detection and modified stiffness due to the change of the mass and stiffness of structure by using the original and modified dynamic characteristics. The method is applied to examples of a cantilever and 3 degree of freedom by modifying the mass. The predicted detection of mass positions and magnitudes are in good agreement with these from the structural reanalysis using the modified mass.

3

$$a_{ii} = -\frac{\Delta M_{ii}}{2} \tag{6}$$

$$a_{ij} = -\frac{-\bigtriangleup M_{ij} \omega_{aj}^2 + \bigtriangleup K_{ij}}{\omega_{ai}^2 - \omega_{aj}^2}$$
(7)

$$\Delta K_{ij=} \{ \phi_o \}_i^T [\Delta K] \{ \phi_o \}_j \qquad (9)$$
$$\Delta M_{ij} \stackrel{\text{pl}}{\to} \Delta K_{ij}$$

$$\Delta K_{ij}$$

$$\omega_{oi}^{2}$$
와 ω_{oj}^{2}

$$\lambda_{\alpha i} \stackrel{\text{phi}}{=} \lambda_{\alpha j}$$
(8) (9)
$$[\phi_{\alpha}]^{T} [\Delta M] [\phi_{\alpha}] = [\Delta M_{ij}] \qquad (10)$$

$$[\phi_o]^T[\Delta K][\phi_o] = [\Delta K_{ij}]$$
(11)

$$a_{ii} = -\frac{1}{2} \left\{ \sum_{k=1}^{n} a_{ki}^{2} + \Delta M_{ii} + 2 \sum_{k=1}^{n} a_{ki} \Delta M_{ik} \right. \\ \left. + \sum_{q=1}^{n} a_{qi} \sum_{k=1}^{n} a_{ki} \Delta M_{qk} \right\} \qquad i = j \quad (12)$$

$$a_{ij} + a_{ji} = -\left\{ \Delta M_{ij} + \sum_{k=1}^{n} a_{ki} \Delta M_{ik} + \sum_{k=1}^{n} a_{kj} \Delta M_{jk} \right. \\ \left. + \sum_{q=1}^{n} a_{qi} \sum_{k=1}^{n} a_{kj} \Delta M_{jk} \right\} = \sum_{k=1}^{n} a_{ki} a_{kj} \qquad i \neq j \quad (13)$$

$$\omega_{i}^{2} = \omega_{qi}^{2} + 2a_{ii} \omega_{qi}^{2} + \Delta K_{ii} + \sum_{k=1}^{n} a_{ki} \Delta K_{ik} + \sum_{k=1}^{n} a_{ki}^{2} \right. \\ \left. \omega_{qk}^{2} + \sum_{k=1}^{n} a_{ki} \Delta K_{ki} + \sum_{q=1}^{n} a_{qi} \sum_{k=1}^{n} a_{ki} \Delta K_{qk} \quad i = j \quad (14)$$

$$a_{ij} \omega_{qi}^{2} + a_{ji} \omega_{qj}^{2} = \Delta K_{ij} + \sum_{k=1}^{n} a_{kj} \Delta K_{ik} + \sum_{k=1}^{n} a_{kj} \omega_{qk}^{2} \right. \\ \left. + \sum_{k=1}^{n} a_{ki} \Delta K_{jk} + \sum_{q=1}^{n} a_{qj} \sum_{k=1}^{n} a_{kj} \Delta K_{qk} \quad i \neq j \quad (15)$$

2.3

가

(5)

.

가

$$(K_{o} - \lambda_{o} M_{o}) \phi_{o} = 0$$
(1)

$$(K - \lambda M) \phi = [(K_{o} + \Delta K) - (\lambda_{o} + \Delta \lambda) (M_{o} + \Delta M)] (\phi_{o} + \Delta \phi) = 0$$
(2)

$$K_{o} \stackrel{\text{s}}{\to} M_{o} K, M, \Delta M, \Delta K$$

$$\lambda$$
와 ϕ , λ_{o} , ϕ_{o} , $\Delta\lambda$, $\Delta\phi$

,

.

2.1

•

Fox⁽⁹⁾

가

$$\begin{aligned} \{ \boldsymbol{\bigtriangleup} \boldsymbol{\phi} \}_{i} &= \sum_{k=1}^{N} a_{ki} \left\{ \boldsymbol{\phi}_{o} \right\}_{k} \\ \{ \boldsymbol{\bigtriangleup} \boldsymbol{\phi} \}_{i} & i \end{aligned} \tag{3}$$

$$\left\{\phi_{o}\right\}_{k}$$
 k . (3)

$$[\varDelta\phi] = [\alpha][\phi_o]$$
(4)
$$[\alpha] = [\varDelta\phi][\phi_o]^{-1}$$
(5)

,

2.2 Fox⁽⁹⁾

.

.

.

2) (12)~(15)

$$\begin{bmatrix} \Delta M_{u} \end{bmatrix} \begin{bmatrix} \Delta K_{u} \end{bmatrix} & a_{ij} \\ & a_{ij} \\ (12), (13) & N \\ N \times N ? ? & \Delta M_{u} & N \times N \\ \Delta M_{u} & 7 ? & M_{u} & N \times N \\ \Delta M_{u} & 7 ? & N \\ \Delta M_{u} & 7 ? & (12), (13) \\ 2 & (12), (13) \\ 2 & (12), (13) \\ a_{ij} = -\frac{1}{2} \Delta M_{ij}, & i = j \quad (16) \\ a_{ij} + a_{ij} = -\Delta M_{uj}, & i \neq j \quad (17) \\ (16), (17) & (12), (13) \\ \Delta M_{u} & \Delta M_{ij} \\ \end{bmatrix}$$

$$\begin{bmatrix} \Delta M_{u}^{(1)} = -2a_{ij} & i = j \quad (18) \\ \Delta M_{u}^{(1)} = a_{ij} + a_{ij} & i \neq j \quad (19) \end{bmatrix}$$

$$\Delta M_{ij}^{(i)} \quad \Delta M_{ij}^{(i+1)} \qquad i$$

(i+1) ΔM_{ij} .

.

$$\Delta K_{ij}^{(1)} = a_{ij} \, \omega_{oi}^{2} + a_{ji} \, \omega_{oj}^{2} \quad i \neq j \tag{23}$$

$$\Delta K_{ii}^{(j+1)} = \omega_{i}^{2} - \omega_{oi}^{2} - 2a_{ii} \omega_{oi}^{2} - \sum_{k=1}^{n} a_{ki} \Delta K_{ik}^{(i)}$$

$$- \sum_{k=1}^{n} a_{ki}^{2} - \omega_{ok}^{2} - \sum_{k=1}^{n} a_{ki} \Delta K_{ki}^{(i)}$$

$$- \sum_{q=1}^{n} a_{qi} \sum_{k=1}^{n} a_{ki} \Delta K_{ok}^{(i)} \qquad i = j$$

$$\Delta K_{ii}^{(j+1)} = a_{ii} \omega_{oi}^{2} + a_{ji} \omega_{oj}^{2} - \sum_{k=1}^{n} a_{ki} \Delta K_{ik}^{(i)}$$

$$- \sum_{k=1}^{n} a_{ki} a_{ki} \omega_{ok}^{2} - \sum_{k=1}^{n} a_{ki} \Delta K_{ik}^{(i)}$$

$$- \sum_{q=1}^{n} a_{qi} \sum_{k=1}^{n} a_{kj} \Delta K_{qk}^{(i)}, \quad i \neq j$$

$$(25)$$

(3)
$$\Delta M_{u} \Delta K_{u}$$

 $[\Delta M_{u}] [\Delta K_{u}]$.
(4) (10), (11)
 $[\Delta M] = \{[\phi_{o}]^{T}\}^{-1}[\Delta M_{u}][\phi_{o}]^{-1}$ (26)
 $[\Delta K] = \{[\phi_{o}]^{T}\}^{-1}[\Delta K_{u}][\phi_{o}]^{-1}$ (27)

.

$$[\Delta M]$$
 $[\Delta K]$

$$(5) \qquad [\varDelta M] \qquad [\varDelta K]$$

•

(a) cantilever

(b) 3 d.o.f system Fig. 1 Model of cantilever and 3 d.o.f system

	modifi	$\omega_i = \omega_{vi}$	
mode	before 🖤 🖬	after 🖤	@ ₁₁ (%)
1	3.516	3.048	-13.295
2	22.046	22.036	-0.004
3	61.919	59.073	-4.596
4	122.319	118.855	-2.832
5	203.020	192.870	-4.999
6	337.274	327.345	-2.943
7	493.263	480.574	-2.527
8	715.338	659.279	-7.837
9	1016.189	982.529	-3.312
10	1494.874	1481.154	-0.917

Table	1	Comp	arison	of	na	tural	freq	uencies	by
	me	odifying	g struct	ure	in	cantil	ever	beam	

Table 2 Comparison of natural frequencies by modifying structure in 3 d.o.f system

1	modification	$\omega_i = \omega_{vi}$	
mode	before 🖤 📰	after 🐲	@ ₁₁ (%)
1	0.3025	0.3411	11.317
2	1.2384	1.3150	6.185
3	1.5410	1.6853	9.364

4.

4.1		
	가 5 10	
가	. Table 1 10	
13.3%		
Table 2	3 3	
	11.3% 가 .	
4.2		
Fig. 2	3	
가		
10	1 4	
	가 .	3
	3	
가		
Fig. 3		
	Fig. 2	

(b) 3 d.o.f system

Fig. 3 Comparison of delta mode shapes in cantilever and 3 d.o.f system

Table 3Predictive mass and stiffness incantilever

< >	D 11 1	
(a)	Predictive	mass

	ratio		
original	additive	predictive	$\Delta m_N \Delta m$
m	Δm	Δm_{ϕ}	(%)
0.2	0	0	-
0.2	-0.040	0.0040	100.00
0.2	0	0	-
0.2	0.040	0.0040	100.00
0.2	0	0	-
	original	mass original additive m ⊿m 0.2 0 0.2 -0.040 0.2 0 0.2 0 0.2 0 0.2 0 0.2 0 0.2 0 0.2 0 0.2 0	mass original additive predictive Image: Im

(b) Predictive stiffness

		ratio			
No.	original	additive	predictive	$\Delta EI_{g}/\Delta EI$	
	EI	DEI	ΔEI_p	(%)	
1	1.0	0	0	-	
2	1.0	-0.488	-0.488	100.00	
3	1.0	0	0	-	
4	1.0	0	0	-	
5	1.0	0	0	-	

Table 4 Predictive mass in 3 d.o.f system(a) Predictive mass

		ratio		
Element	original	additive	predictive	$\Delta m_s / \Delta m$
INO.	m	Δm	Δm_{ϕ}	(%)
1	1.0	0.40	0.40	100.00
2	3.0	0	0	-
3	2.0	-0.50	-0.50	100.00

(b) Predictive stiffness

	:	ratio		
Element	original	additive	predictive	$\Delta k_{\phi}/\Delta k$
NO.	k	Δk	Δk_{ϕ}	(%)
1	1.0	0.50	0.5000	100.00
2	2.0	0.30	0.3000	100.00
3	1.0	0	0	100.00

(1)Ahmadian, H., Mottershead, J. E. and Friswell
M. I., 1998, "Regularisation Methods for Finite Element Model Updating," *Mechanical Systems* and Signal Processing, Vol. 12, No. 1, pp. 47-64

- (2) Friswell, M. I., Inman, D. J. and Pilkey, D. F.
 , 1998, "The Direct Updating of Damping and Stiffness Matrices" *AIAA Journal*, Vol. 36, No. 3, pp. 491-493.
- (3) Fritzen, C. P., 1986, "Identification of Mass, Damping and Stiffness Matrices of Mechanical Systems," *Transactions of the ASME, Journal of Vibration, Acoustics, Stress and Reliability in Design,* Vol. 108, No.1, pp. 9-16.
- (4) Fuh, J. S., Chen, S. Y. and Berman, A., 1984, "System Identification of Analytical Models of Damped Structures," *AIAA/ASME/ASCE/AHS 25th Structures, Structural Dynamics & Materials Conference, Palm Springs, California*, Paper No. AIAA-84-0926.
- (5) Friswell, M.I., Penny, J.E.T. and Wilson, D.A.L., 1994, "Using Vibration Data and Statistical Measures to Locate Damage in Structures," Journal of Analytical and Experimental Modal Analysis, Vol. 9, No. 4, pp. 239-254.
- (6) Lam, H. F., Ko, J. M., and Wong, C. W., 1998, "Localization of Damaged Structural Connections Based on Experimental Modal and Sensitivity Analysis," Journal of Sound and Vibration, Vol. 210, No. 1, pp. 91-115.
- (7)Wei, F. S. and Zhang, D. W., 1989, "Mass Matrix Modification Using Element Correction Method," AIAA Journal, Vol. 27, No. 1, pp. 119-121.
- (8) Zhang, Q., Wang, W., Allemang, R. J., and Brown, D. L., 1989, "Prediction of Mass Modification For Desired Natural Frequencies," Journal of Analytical and Experimental Modal Analysis, Vol. 4, No. 2, pp. 39-44.
- (9) Fox, R. S. and Kapoor. M. P, 1968. "Rates of Change of Eigenvalues and Eigenvectors." *AIAA Journal*, Vol. 6, No.12 pp.2426 - 2429
- (10) Lee, J. Y., 2002, "A Structural Eigenderivative Analysis by Modification of Design Parameter," *Transactions of KSME A*, Vol. 26, No. 4, pp. 739 - 744.