• Title/Summary/Keyword: Markov-chain

Search Result 892, Processing Time 0.025 seconds

Statistical design of Shewhart control chart with runs rules (런 규칙이 혼합된 슈와르트 관리도의 통계적 설계)

  • Kim, Young-Bok;Hong, Jung-Sik;Lie, Chang-Hoon
    • Journal of Korean Society for Quality Management
    • /
    • v.36 no.3
    • /
    • pp.34-44
    • /
    • 2008
  • This research proposes a design method based on the statistical characteristics of the Shewhart control chart incorporated with 2 of 2 and 2 of 3 runs rules respectively. A Markov chain approach is employed in order to calculate the in-control and out-of-control average run lengths(ARL). Two different control limit coefficients for the Shewhart scheme and the runs rule scheme are derived simultaneously to minimize the out-of-control average run length subject to the reasonable in-control average run length. Numerical examples show that the statistical performance of the hybrid control scheme are superior to that of the original Shewhart control chart.

Bayesian Hierarchical Model with Skewed Elliptical Distribution

  • Chung Younshik
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2000.11a
    • /
    • pp.5-12
    • /
    • 2000
  • Meta-analysis refers to quantitative methods for combining results from independent studies in order to draw overall conclusions. We consider hierarchical models including selection models under a skewed heavy tailed error distribution and it is shown to be useful in such Bayesian meta-analysis. A general class of skewed elliptical distribution is reviewed and developed. These rich class of models combine the information of independent studies, allowing investigation of variability both between and within studies, and weight function. Here we investigate sensitivity of results to unobserved studies by considering a hierarchical selection model and use Markov chain Monte Carlo methods to develop inference for the parameters of interest.

  • PDF

Multiple Comparison for the One-Way ANOVA with the Power Prior

  • Bae, Re-Na;Kang, Yun-Hee;Hong, Min-Young;Kim, Seong-W.
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.1
    • /
    • pp.13-26
    • /
    • 2008
  • Inference on the present data will be more reliable when the data arising from previous similar studies are available. The data arising from previous studies are referred as historical data. The power prior is defined by the likelihood function based on the historical data to the power $a_0$, where $0\;{\le}\;a_0\;{\le}\;1$. The power prior is a useful informative prior for Bayesian inference such as model selection and model comparison. We utilize the historical data to perform multiple comparison in the one-way ANOVA model. We demonstrate our results with some simulated datasets under a simple order restriction between the treatments.

Classical and Bayesian methods of estimation for power Lindley distribution with application to waiting time data

  • Sharma, Vikas Kumar;Singh, Sanjay Kumar;Singh, Umesh
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.3
    • /
    • pp.193-209
    • /
    • 2017
  • The power Lindley distribution with some of its properties is considered in this article. Maximum likelihood, least squares, maximum product spacings, and Bayes estimators are proposed to estimate all the unknown parameters of the power Lindley distribution. Lindley's approximation and Markov chain Monte Carlo techniques are utilized for Bayesian calculations since posterior distribution cannot be reduced to standard distribution. The performances of the proposed estimators are compared based on simulated samples. The waiting times of research articles to be accepted in statistical journals are fitted to the power Lindley distribution with other competing distributions. Chi-square statistic, Kolmogorov-Smirnov statistic, Akaike information criterion and Bayesian information criterion are used to access goodness-of-fit. It was found that the power Lindley distribution gives a better fit for the data than other distributions.

Bayesian analysis of random partition models with Laplace distribution

  • Kyung, Minjung
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.5
    • /
    • pp.457-480
    • /
    • 2017
  • We develop a random partition procedure based on a Dirichlet process prior with Laplace distribution. Gibbs sampling of a Laplace mixture of linear mixed regressions with a Dirichlet process is implemented as a random partition model when the number of clusters is unknown. Our approach provides simultaneous partitioning and parameter estimation with the computation of classification probabilities, unlike its counterparts. A full Gibbs-sampling algorithm is developed for an efficient Markov chain Monte Carlo posterior computation. The proposed method is illustrated with simulated data and one real data of the energy efficiency of Tsanas and Xifara (Energy and Buildings, 49, 560-567, 2012).

A Study on The Change of Occurrence Characteristics of Daily Seoul Rainfall using Markov Chain (마코브 연쇄를 이용한 서울지점 일강우의 발생특성 변화 연구)

  • Hwang, Seok-Hwan;Kim, Joong-Hoon;Yoo, Chul-Sang;Jung, Sung-Won;Joo, Jin-Gul
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1202-1206
    • /
    • 2009
  • 본 논문에서는 세계 최장의 기록을 보유하고 있는 서울지점의 강우량 자료를 이용하여 강우 발생특성의 장기 변동성을 분석하였다. 우선 마코브 연쇄에 근거한 전이확률 및 발생특성을 분석하여 측우기 자료의 정확성을 강우의 발생확률적 측면에서 평가하였다. 전이확률 및 발생특성 분석결과 원자료 계열의 CWK와 MRG는 발생특성이 다르게 나타났다. 강우사상의 특성은 과거에 비해 강우사상의 발생빈도가 높아지고 있으며 각 강우사상의 지속기간은 짧아지고 있는 것으로 나타났다. 이러한 결과를 최근 강우량의 증가양상과 더불어 고려하면 강우사상의 빈도와 심도(강우강도)가 증가하는 추세라고 해석할 수 있다.

  • PDF

Derivation of Design Flood Using Multisite Rainfall Simulation Technique and Continuous Rainfall-Runoff Model

  • Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.540-544
    • /
    • 2009
  • Hydrologic pattern under climate change has been paid attention to as one of the most important issues in hydrologic science group. Rainfall and runoff is a key element in the Earth's hydrological cycle, and associated with many different aspects such as water supply, flood prevention and river restoration. In this regard, a main objective of this study is to evaluate design flood using simulation techniques which can consider a full spectrum of uncertainty. Here we utilize a weather state based stochastic multivariate model as conditional probability model for simulating the rainfall field. A major premise of this study is that large scale climatic patterns are a major driver of such persistent year to year changes in rainfall probabilities. Uncertainty analysis in estimating design flood is inevitably needed to examine reliability for the estimated results. With regard to this point, this study applies a Bayesian Markov Chain Monte Carlo scheme to the NWS-PC rainfall-runoff model that has been widely used, and a case study is performed in Soyang Dam watershed in Korea. A comprehensive discussion on design flood under climate change is provided.

  • PDF

A Matrix Method for the Analysis of Two - Dimensional Markovian Queues

  • Kim, Sung-Shick
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.8 no.2
    • /
    • pp.15-21
    • /
    • 1982
  • This paper offers an alternative to the common probability generating function approach to the solution of steady state equations when a Markovian queue has a multivariate state space. Identifying states and substates and grouping them into vectors appropriately, we formulate a two - dimensional Markovian queue as a Markov chain. Solving the resulting matrix equations the transition point steady state probabilities (SSPs) are obtained. These are then converted into arbitrary time SSPs. The procedure uses only probabilistic arguments and thus avoids a large and cumbersome state space which often poses difficulties in the solution of steady state equations. For the purpose of numerical illustration of the approach we solve a Markovian queue with one server and two classes of customers.

  • PDF

Control of G/MX/1 Queueing System with N-Policy and Customer Impatience

  • Lim, Si-Yeong;Hur, Sun
    • Industrial Engineering and Management Systems
    • /
    • v.15 no.2
    • /
    • pp.123-130
    • /
    • 2016
  • We introduce a queueing system with general arrival stream and exponential service time under the N-policy, where customers may renege during idle period and arrival rates may vary according to the server's status. Probability distributions of the lengths of idle period and busy period are derived using absorbing Markov chain approach and a method to obtain the optimal control policy that minimizes long-run expected operating cost per unit time is provided. Numerical analysis is done to illustrate and characterize the method.

Predicting the Score of a Soccer Match by Use of a Markovian Arrival Process (마코비안 도착과정을 이용한 축구경기 득점결과의 예측)

  • Kim, Nam-Ki;Park, Hyun-Min
    • IE interfaces
    • /
    • v.24 no.4
    • /
    • pp.323-329
    • /
    • 2011
  • We develop a stochastic model to predict the score of a soccer match. We describe the scoring process of the soccer match as a markovian arrival process (MAP). To do this, we define a two-state underlying Markov chain, in which the two states represent the offense and defense states of the two teams to play. Then, we derive the probability vector generating function of the final scores. Numerically inverting this generating function, we obtain the desired probability distribution of the scores. Sample numerical examples are given at the end to demonstrate how to utilize this result to predict the final score of the match.