References
- Bartholomew, D. J. (1959a). A test of homogeneity for ordered alternatives. Biometrika, 46, 36-48 https://doi.org/10.1093/biomet/46.1-2.36
- Bartholomew, D. J. (1959b). A test of homogeneity for ordered alternatives. II. Biometrika, 46, 328-335 https://doi.org/10.1093/biomet/46.3-4.328
- Bartholomew, D. J. (1961a). A test of homogeneity of means under restricted alternatives (with discussions). Journal of the Royal Statistical Society, Ser. B, 23, 239-281
- Bartholomew, D. J. (1961b). Ordered tests in the analysis of variance. Biometrika, 48, 325-332 https://doi.org/10.1093/biomet/48.3-4.325
- Berger, J. O. and Pericchi, L. R. (1996). The intrinsic Bayes factor for model selection and prediction. Journal of the American Statistical Association, 91, 109-122 https://doi.org/10.2307/2291387
- Bohrer, R. and Francis, G. K. (1972). Sharp one-sided confidence bounds over positive regions. The Annals of Mathematical Statistics, 43, 1541-1548 https://doi.org/10.1214/aoms/1177692386
- Ibrahim, J. G. and Chen, M. H. (2000). Power prior distributions for regression models. Statistical Science, 15, 46-60 https://doi.org/10.1214/ss/1009212673
- Gelfand, A. E., Hills, S. E., Racine-poon, A. and Smith, A. F. M. (1900). Illustration of Bayesian inference in normal data models using Gibbs sampling. Journal of the American Statistical Association, 85, 972-985 https://doi.org/10.2307/2289594
- Gopalan, R. and Berry, D. A. (1998). Bayesian multiple comparisons using Dirichlet process priors. Journal of the American Statistical Association, 93, 1130-1139 https://doi.org/10.2307/2669856
- Hayter, A. J. (1990). A one-sided studentized range test for testing against a simple ordered alternative. Journal of the American Statistical Association, 85, 778-785 https://doi.org/10.2307/2290015
- Kim, S. W. and Sun, D. (2000). Intrinsic priors for model selection using an encompassing model with applications to censored failure time data. Lifetime Data Analysis, 6, 251-269 https://doi.org/10.1023/A:1009641709382
- Kim, H. J. and Kim, S. W. (2001). Two-sample Bayesian tests using intrinsic Bayes factors for multivariate normal observations. Communications in Statistics-Computation and Simulation, 30, 426-436
- Liu, L. (2001). Simultaneous statistical inference for monotone dose-response mean. Doctoral dessertation, Memorial University of Newfoundland, St. John's, Canada
- Pauler, D. K., Wakefield, J. C. and Kass, R. E. (1999). Bayes factors and approximations for variance component models. Journal of the American Statistical Association, 94, 1242-1253 https://doi.org/10.2307/2669938
- Son, Y. and Kim, S. W. (2005). Bayesian single change point detection in a sequence of multivariate normal observations. Journal of Theoretical and Applied Statistics, 39, 373-387 https://doi.org/10.1080/02331880500315339
Cited by
- Bayesian methods in clinical trials with applications to medical devices vol.24, pp.6, 2017, https://doi.org/10.29220/CSAM.2017.24.6.561