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Multiple Comparison for the One-Way ANOVA with
the Power Prior!

Rena Bae', Yunhee Kang?, Minyoung Hong?, Seong W. Kim?

Abstract

Inference on the present data will be more reliable when the data arising
from previous similar studies are available. The data arising from previous
studies are referred as historical data. The power prior is defined by the
likelihood function based on the historical data to the power ag, where 0 <
ap < 1. The power prior is a useful informative prior for Bayesian inference
such as model selection and model comparison. We utilize the historical
data to perform multiple comparison in the one-way ANOVA model. We
demonstrate our results with some simulated datasets under a simple order
restriction between the treatments.

Keywords: Bayes factor; historical data; Markov Chain Monte Carlo; order restricted
inference; power prior.

1. Introduction

When we compare several treatment means, most of methodologies only conclude
that either all means are same or at least one mean is different from other means. For
instance, when the one-way ANOVA model is used, small P-values indicate that the
treatment means are not equal. However, it is more interesting to explore inherent
relations between the treatment means. Multiple comparison is one of useful statistical
techniques to detect these relations. In some applications like carcinogenicity or dose
response studies, researchers may believe that there exists a certain order restriction.

Order restricted inference should be employed when treatment means are assumed
to be ordered. In a dose response model, one might believe that the mean response
is nondecreasing or nonincreasing as the dose level increases. That is, we may assume
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that p; < pe < -+ < ug, where p; is the treatment mean for i = 1,...,k. This is
called a simple order restriction. When a tree ordering is imposed, we assume that
o < pi,...,ME, where ug is the mean for the control group. In this case, the order of
treatment means is unknown.

It is known that frequentist approaches for multiple comparison have been well es-
tablished under the simple-order assumption. There are two likelihood ratio tests such
as the x2 test and the E? test of Bartholomew (1959a, 1959b, 1961a, 1961b) to test the
homogeneity of means against ordered alternatives. Bohrer and Francis (1972) found
some useful results on simultaneous bounds for restricted contrasts. For pairwise com-
parison in the simple-order, Hayter (1990) performed the single-sided Studentized-range
test. Liu (2001) developed the single sided the multiple comparison procedure for the
case of a simple-order with known variance.

A considerable amount of work has been developed for order restricted inference
in Bayesian perspectives. Gelfand et al. (1990) computed Bayes estimates of ordered
normal means with any variance. Gopalan and Berry (1998) proposed both-sided multiple
comparison procedures with Dirichlet-process prior. Pauler et al. (1999) utilized Bayes
factors to test hypotheses with inequality constraints. In life testing models, Kim and
Sun (2000) made use of intrinsic priors and Bayes factors in multiple comparison for
exponential means. Kim and Kim (2001) performed a multiple test for multivariate
normal observations. Son and Kim (2005) considered multiple comparison problems
with a single change point.

Prior elicitation perhaps plays a very important role in Bayesian inference. In prin-
ciple, priors formally represent available information but in practice noninformative and
improper priors are often used. Nevertheless, they cannot be used in some situations
such as model selection or hypothesis testing (cf. Berger and Pericchi, 1996). In these
cases a proper prior on the parameters is needed making Bayesian inference plausible.
Moreover, noninformative priors do not make use of real prior information that one may
need for a specific situation. Thus, when we have real prior information, it is possible
to make posterior inference quite accurate. This often occurs when the current study is
similar to the previous study in measuring the response and covariates.

The data arising from previous studies are referred as ‘historical data’. In carcino-
genicity studies, for example, large historical databases exist for the control animals from
previous experiments. In all of these situations, it is natural to incorporate the historical
data into the current study by quantifying it with a suitable prior distribution on the
model parameters. One method of constructing an informative prior based on the his-
torical data is the power prior of Ibrahim and Chen (2000). The power prior is defined
by the likelihood function based on the historical data, raised to a power ag, where ag
(0 < a9 < 1) is a scalar parameter that controls the influence of the historical data on
the current study.

In this article we incorporate the historical data to perform multiple comparison
in the one-way ANOVA model. The rest of this article is organized as follows. In
Section 2, we propose the model and the prior distributions and derive full conditional
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distributions. In Section 3, we present computation schemes with Markov Chain Monte
Carlo (MCMC) methodologies. We also explain the concept of the Bayes factor as a
model selection criterion. In Section 4, we show numerical results with some simulated
datasets. Finally, we provide concluding remarks in Section 5.

2. Methodologies

2.1. The model and hypotheses

The conventional one-way fixed ANOVA model can be characterized as
Yij = ps + €5, for i=1,2...k, j=1,2,...,m, (2.1)

where y;; denotes the observed response on the j** subject under the i treatment, u; is
a fixed treatment effect, and ¢;; is an error term. Note that Yi;, Mi and €;; are all scalars
and the overall sample size is m x k.

We assume that the ¢;;’s are independent and normally distributed with mean 0 and
variance o2. We rewrite the model in (2.1) with a more concise format. That is,

yi=Xp +e€, j=12,...,m, (2.2)

where y;, u* and ¢; are vectors and X is a k x k identity matrix. Specifically, y; denotes
a k x 1 vector of observed responses on the j** subject, u* is the k x 1 vector with each
component being u; for i =1,...,k, and ¢; is a k x 1 error vector distributed as normal
distribution with mean vector 0 and variance-covariance matrix o21I.

Since k normal means are assumed to be under a simple order, we stay the smallest
mean with itself and reparameterize remaining each mean with the difference between
the preceding mean and itself. Thus, the second mean will be denoted as u; +J; and the

it" mean will be denoted as p1+ 61+ 02 +---+ ;1. Therefore, for i =1,2,...,k and
J=1,2,...,m, the distribution of the individual response observation y;; will satisfy the
followings:

iid
y1j|/‘1702 < N(M1702)7
sid
yojlp1, 02,81 N(us + 61,07%),

Yrjl1, 07,61, k-1 9 N(pi + 61 + 62+ + dp—1,02).

In this article we consider the hypotheses for successive pairwise comparisons of the
means in the model, My, : u; = p; +6; versus My; : s < p; +6; fori=1,2,...,k—1. If
the null hypothesis is rejected, then it is concluded that there are significant differences
in the population means.
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2.2. Prior specifications

We consider the power prior of Ibrahim and Chen (2000). Let y = (y1,...,yn) be
the response observation data from the current study. Suppose we have historical data
Yo = (Yo1,- - -, Yon) from similar previous study. Let L(f|y) denote the likelihood function
for the current study, where 8 is a vector of parameters. Further, let my(8|-) denote the
prior distribution for 8, which is called the initial prior. This initial prior is assumed
before the historical data yo is observed. We define the joint power prior distribution of
(8, ap) for the current study as

(8, aolyo) o< [L(Byo)]*°mo(flco)m(aolv0), (2.3)

where ¢g is a specified hyperparameter for the initial prior and g is a specified hyper-
parameter for the prior distribution of ag. The parameter cy controls the impact of the
initial prior mo(f|cy), and the parameter ay is a precision parameter for the historical
data. The parameter ag controls heaviness of the tails of the prior for 6. As ag becomes
smaller, the tails of (2.3) become heavier. Such control may be important when there
is heterogeneity between the previous and the current study or the sample sizes of two
studies are quite different. It is reasonable that the range of ag is restricted to be between
0 and 1, and thus it is natural that the distribution for m(ag|yp) is chosen to be a beta
distribution. That is, 7(ag) o< ag° ™' (1 — ao)’\o_1 for 0 <ag <1.

We describe the initial priors for uj, d;, 0. We assume a normal prior for p; with
mean o and variance o2 and an inverse gamma prior for o2 with hyperparameters a and
b. Note that these priors are (marginal) conjugate priors for y; and o2 respectively. Since
d; has either zero or a positive value, we assume a mixture of an exponential distribution
and a discrete distribution with its entire mass at §; = 0. So, the prior for J; is

Pis if (51 = 0,
p(6;) =< (1—p:)t exp{ }, if 4§, >0, (2.4)
0, if 8 <0,

where £ is assumed to be a known hyperparameter. Finally, we assume a beta distribution
for p; with hyperparameter oy and S,.

2.3. Full conditional distributions

Let Yo = (Y915 - - - »Yom,)’ be the historical data from the similar study. Let

f50=0, Y-(yllv"'ay;n)la
yz=zyﬂa yOz ZZ(:OJ
Jk: lmo
S—ZZ(%; - Z(Sz>, SO—ZZ<ZJOU p - 25l>,
=1 1 1 1
q—u1151+52+ 4 Sy o
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Let 6 = (u1,02,{8;},{p:},a0). The joint posterior with the power prior is then

. - 1 * — *
PO Y0) x| [T 2m) *210%1 V2exp{ -3 - XY D)y~ X

agp

e 1
[H @m) 0?1~ 1/QGXP{—'Q‘(ZIOJ Xu*) (0® D) yo; — Xu* )}
(m—po)®\ 1 (1N f 1
27703 P { 202 T(a)be \ 02 P\ " ho?

1 &
pilis—oy + (1 )geXP{—Z}I{épo}]

ao—l(l _ pi)ﬁ0—1:| ago—l(l _ ao))\o—l,

where

H1

1+ o1
Xu* = .

1+ 0+ + Sk

In order to use the MCMC methods, we need the following full conditional distributions
of each parameter.

1. The full conditional distribution of p,

Since

p(ﬂl!Y, 023 {52} s Py aO)

s aos — )2
ool e )

20¢

1 m 1 m
:exp{—rz (y1; — }"-exp{—FZ(ykj—Q)z}
, o
)2
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the full conditional distribution of x; follows a normal distribution with mean u/v and
variance 1/v, where

k—1

k k-1 k
m _ apm _ 7
U=§|: Yi — (k_l)‘sljl‘l” (;20 |§ in—E (k—1d +—g
; i=1

[op
=1 0

and

km + kagmg
72 o2

L1
a?’

2. The full conditional distribution of o2

Since
p(o?Y, 1, {8:}, {pi} , a0)
o = ex {— > }ex { M}ex _ L
(02) 5+ 5% 2 a1 P17 202 P\ 202 S PP T ho2
_ 1 ex 1 s + apso + 1
T (02) S et P72 (2772 "ol

the full conditional distribution of o2 is

1 -1
p(a2|y,u1,{5i},{pi},ao)NIG(k7m+ka(;mo a,[s doSo } )

3. The full conditional distribution of §;
Note that

p(51|Y’/'L1702a{6i:i = 2737"'7k_ 1}7/)1,00)

1 & 1
X €xp 557 Z(ylj —N1)2 T eXp T 92 Z(ykj *q)Q
Jj=1 j=1

mo mo
a ao
x e {‘55’—2 3 ors - u1)2} e {‘F > (ks - q)Q}
7=1 g=1

1 é
X (p11{51=o} +(1- P1)Z eXP{-?} 1{51>0}) .



Multiple Comparison for the One-Way ANOVA with the Power Prior 19

Consider d; > 0. Then we have

p((51|Y,u1,0'2,{5i,i = 2,3,...,k‘— 1},p1,a0)

(1—01)1exp{ 20 22(51—(?/21_/‘1))2}"’

XeXP{_QLi:: = (ykj — g+ 1)) }exp{ 5 22 — (Yoz25 — ))2}“'
{ i: — (Yokj — g+ 1)) }exp —%}
= i (- ;;:“°m°>}

1

1 m m
X exp ¢ 261 2—21;2] TZykJ—q+51

1_

l‘r\l»——l

1
+@ ;(yozj — 1) +- 2 53 Z Yokj — g +01) — 25) }

j=1

_ 1 (k — 1)(m + agmq) 202 m._
_(1—p1)gexp{_ 9252 [6%_ (k—l)(m+a0m0) <0_2(y2 .u’l)
- (yk—Q+51)+am0(yoz Hl)*‘"'*‘%@oh—Q+51)—%>51]}

2

_ 1 (k — 1)(m + agmyg) o m._
‘“"’”Ee"p{“ s b ey (30w

a1y

2
m agmo ,_ 1
+"'+ZT_2@1¢—<1+51)+'7@02_M1)+"'+%(y0k_4+51)_E)] }

xe i (m(“ Y (G — g+ 61)
X - — - _
p 2(k“1)(m+a0m0) 0_2 Yo H1 0_2 Yk q 1
2
apmo ,_ apmyg ,_ 1
—— (y02_.u1)+"'+_(;20(90k”Q+51)_Z) }

If 6; = 0, the prior probability of §; is p; and the term 1/¢ drops out. We apply the
identical method for §; > 0. Thus,
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p(82]Y, p1,02, {6;,i=1,3,...,k—1},p2,a0)
2

1 (k — 2)(m + agmyg) o m,_
x (1—p2)gexp{— 202 — [62_ (k — 2)(m + agmy) (;(y:;—ul — %)

2
m._ apmg ,_ apm 1
+"'+‘J—2(yk—q4”52)+ (;20(3103—/11—51)+"'+ ° O(yOk Q+52)“g>]}

o? m,_ m,_
XeXp{Z(k—Q)(m+a0m0) (a—f(yfi — M1 _51)++§(yk—q+52)

apMo

_ agmg ,_ 1\?
— oz — 1 —61) +--- + 220(y0k—q+52)—z) }

If 35 = 0, the prior probability of ds is p2 and 1/€ drops out. Therefore, the full conditional
distribution of 4, can be expressed by a mixture of a discrete part and a continuous part.
So,

cpih(;) if 6;,=0

p(%i]) = c(l—pi)gh(%:) if & >0
0 if 6; <0,
where
N 1 1 ' az 9i A /5)2
h(&) - \/m;exp{_rai[éz ] } { }
Ai = 1{51‘>0},
a; o
" (k—19)(m+aomo)
and
k
6= 3 [55 0 -a+0) + 25 (W —a+6)]. (25)
p=i+1

Here, the normalizing constant c is

1
() + (1 p) L Jy (E)d5:

4. The full conditional distribution of p;

a _ 1 é;
p(pildi) o< o1 — ps)Po? piI{él:O}+(1_Pi)ZeXP{_E}I{6i>O}]

pleot=lq _ pyBo=1 i 5, =0,
°‘° 11— p)Bo+D=1 i § > 0.
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With ag = 8y = 1 (uniform), the full conditional distribution of p; is

(ofd) = { BETA@. D), if 6,=0,
PWil%) =1 BETAQ1,2), if & > 0.

5. The full conditional distribution of ag

plaolY, pn, 0, {5.3) oc (2m0®) =45 exp {22} 0o~ (1 - ag) 7.

3. Computation Schemes

Suppose two models M; and M, are under consideration. Under M;, the data X has
a parametric distribution with density f;(X16;). Let ©; be the parameter space for 6;.

Let 7(6;) be the prior density for #; under M;. Then the Bayes factor By; of model M;
to model Mj, is defined by

_mo(X) f@z f2(X|02)m(62)d0;
- omi(X) fel f1(X)01)m(01)d6,’

where m;(X) is the marginal or predictive density of X under M;.
We consider hypotheses:

BQl

My, : §; =0 versus My; : 6; > 0.
The Bayes factor is then

bf _ Pr(&i > 0|Y)

== =12... k-1 3.1
Pr(cs,:()[Y)’ 4 < ’ ( )

We use the Gibbs sampler to compute the Bayes factor in (3.1)
Step 1

(1) Set (551) =0forall 1 <1<k —1 as initial values.

(2) Sample p”|5) for 1 <i < k — 1 from BETA(2,1).

(3) Set ") = 0 as initial values.

(4) Sample o2 |Y, u{?, {5§1)} from

11!
IG<k7m+kao2mo+a’[f+M+_] )
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Step t
(1) First, compute the conditional posterior probability of 61“) =0for1<i<k-1by

M9 = P(6® = o) = o Vh(0; 0", 9{%)
i i - - - 00 — -1)?
o VRO a, gy + (1 - ol V)L [P R(6E 0l o) sl

where

(k —3)(m + apmyg)
o2

o =

and
k
0 = 3 [0+ 8 0]
p=i+1

Here, h(-) is defined in (2.5). Next, sample Bi(t) from a Bernoulli trial with the probability
/\Z(t). If B§t) =1, set 5?). If Bi(t) = 0, sample 61@|- from a truncated normal distribution
with mean gzw / az(-t) and variance 1/ agt) for 0 < 5?) <00

(2) Sample pgt)|5§t) for1<i<k-—1 from

BETA(2,1), if & =0,
BETA(1,2), if & > 0.

3) Sample pi?|Y, a2-D {50\ grom
1 [

where

and

(4) Sample o2\)|Y, p{ {61-(0} from

-1
IG<k—m—+ka°m°+a,[f+@+1] )

2 2 2 2 b
Then, repeat Step ¢, for t = 2,3,..., and continue.

Remark 3.1 We use a Metropolis-Hastings algorithm for estimating ao because the
full conditional distribution of ag does not have a well-known specific form.
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4. A Simulation Study

We conducted a simulation study to investigate the performance of the proposed
methods. Let uf and pi denote three dimensional mean vectors for historical and current
data respectively. We consider two different simulated data sets:

dataset 1: pf=(3,3,3) and uj =(3,3,3),

data set 2: pug=(3,4,5) and ui =(3,4,5).
In our simulations we use 6 = 1, and the hyperparameters (g, 59) and (a,b) are (1,10)
and (3,1) respectively. We use £ = 10 in (2.4). We fix the sample size as m = mg = 50

in each population for both historical and current data. We use the Metropolis-Hastings
algorithm within the Gibbs sampler. The algorithm was run for 5,500 iterations after

Table 4.1: Parameter estimates and Bayes factors with the data set 1

parameter

(1m0, X0)  (BagsTay) m=mg 1 o ao 81 52
(1,9)  (0.1,0.090) 20 Mean 2.9971 0.9872 0.5670 0.0064 0.0052
S.D 0.1080 0.1463 0.2116 0.0489 0.0380
Bayes factor 0.0879 0.1216
30 Mean 3.1426 0.9675 0.7161 0.0035 0.0034
S.D 0.0824 0.1103 0.1457 0.0300 0.0281
Bayes factor 0.0658 0.0908
50 Mean 2.9527 1.0169 0.8493 0.0018 0.0025
S.D 0.0619 0.0858 0.0636 0.0168 0.0211
Bayes factor 0.0552 0.0763
(30,30) (0.5,0.064 ) 20 Mean 2.9965 0.9882 0.5920 0.0051 0.0057
S.D 0.1063 0.1391 0.0694 0.0375 0.0403
Bayes factor 0.0929 0.1296
30 Mean 3.1462 0.9651 0.6330 0.0033 0.0034
S.D 0.0848 0.1109 0.0674 0.0279 0.0261
Bayes factor 0.0669 0.0964
50 Mean 2.9536 1.0185 0.7096 0.0027 0.0030
S.D 0.0665 0.0905 0.0581 0.0215 0.0230
Bayes factor 0.0555 0.0781
(3,1) (0.75,0.194) 20 Mean 2.9876 0.9935 0.9561 0.0059 0.0054
S.D 0.0963 0.1279 0.0522 0.0417 0.0368
Bayes factor 0.0790 0.1143
30 Mean 3.1385 0.9645 0.9703 0.0026 0.0025
S.D 0.0768 0.1016 0.0338 0.0221 0.0215
Bayes factor 0.0590 0.0867
50 Mean 2.9508 1.0201 0.9846 0.0015 0.0022

S.D 0.0588 0.0813 0.0158 0.0145 0.0200
Bayes factor 0.0529 0.0761
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Table 4.2: Parameter estimates and Bayes factors with the data set 2

parameter
(M0, X0)  (Hag,0a9) ™M = Mg p1 o ao 41 2
(1,9) (0.1,0.090) 20 Mean  2.9977 0.7492 0.4056  0.9923 1.0213
S.D 0.1666 0.1180 0.2448  0.2346 0.2308
Bayes factor 2.33 x 10%% 1.45 x 10°
30 Mean  3.0783 1.0893 0.7601  1.0130 1.0003
S.D 0.1401 0.1223 0.1092  0.1993 0.2048
Bayes factor 5.93 x 10%® 3.97 x 10"*
50 Mean  3.0200 0.8445 0.7984 1.0243 0.9981
S.D 0.0973 0.0732 0.1043  0.1376 0.1350
Bayes factor 1.99 x 10** 9.19 x 10'°
(30,30) (0.5,0.064) 20 Mean  2.9949 0.7499 0.5605 0.9944 1.0209
S.D 0.1526 0.1091 0.0717  0.2213 0.2222
Bayes factor 2.84 x 10*° 1.76 x 10'°
30 Mean  3.0813 1.0900 0.6502  1.0050 1.0075
S.D 0.1461 0.1307 0.0653  0.2091 0.2092
Bayes factor 1.25 x 10%° 1.11 x 10*°
50 Mean  3.0247 0.8445 0.6740 1.0176 1.0078
S.D 0.0987 0.0754 0.0641  0.1438 0.1415
Bayes factor 1.60 x 10** 2.51 x 10**
(3,1) (0.75,0.194) 20 Mean  2.9844 0.7453 0.9208 0.9991 1.0219
S.D 0.1377 0.0997 0.1063  0.1940 0.1950
Bayes factor 7.36 x 10%* 2.89 x 10%3
30 Mean  3.0908 1.0903 0.9753  0.9946 1.0057
S.D 0.1370 0.1142 0.0259  0.1896 0.1881
Bayes factor 2.45 x 10% 7.97 x 10'?
50 Mean  3.0429 0.8420 0.9786 1.0075 1.0087
S.D 0.0921 0.0690 0.0246  0.1294 0.1282
Bayes factor 1.90 x 10%¢ 7.60 x 10%2

the initial 500 iterations were discarded as a burn-in. We estimate the parameters and
compute the Bayes factors in each data set. We use two different hyperparameters for
(n0,X0) to see behavior of the precision parameter ag. They are (1,9), (30,30) and (3,1).
All numerical values are reported in Tables 4.1 and 4.2.

Table 4.1 is the simulation results for the data set 1. All estimates of parameters are
close to true values regardless of the change of hyperparameters. Since the Bayes factors
d; and J; have both very small values, the results are congruent with what we would
expect from the data set. For fixed m and my, as the estimate of ay increases, the Bayes
factor decreases. For a given set of hyperparameters, as the sample size increases, the
estimate of ag increases resulting in small Bayes factors. These are due to the effect of
historical data.

In general, as u,, increases, we expect the estimate of a¢ increases. However, we can
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see a little bit awkward result. For example, when we change the hyperparameters from
(1,9) to (30,30), the estimate of ay decreases.

Table 4.2 is the result for the data set 2. All estimates are quite close to true values.
The Bayes factors are quite big as expected. For fixed m and myg, as the estimate of ag
increases, the Bayes factor increases in most of cases. In particular, as p,, increases, the
estimate of ag increases when m = mg = 20. For a given set of hyperparameters, as the

sample size increases, the estimate of ag increases resulting in large Bayes factors except
for a few cases.

5. Concluding Remarks

In this article we use the power prior under the simple order alternative to perform
hypothesis testing in the one-way ANOVA fixed model. We only consider the balanced
model in the sense that the sample sizes of each population are the same. We can
also extend this result to the unbalanced case, which is not presented in the text due
to complexity of notation. When the historical data are available, the power prior is
practical in the sense that more information could be incorporated. Future research

directions include analysis of other order restricted alternatives such as the tree and
umbrella orderings.
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