DOI QR코드

DOI QR Code

A Graphical Method of Checking the Adequacy of Linear Systematic Component in Generalized Linear Models

일반화선형모형에서 선형성의 타당성을 진단하는 그래프

  • Kim, Ji-Hyun (Department of Statistics and Actuarial Science, Soongsil University)
  • 김지현 (숭실대학교 정보통계보험수리학과)
  • Published : 2008.01.31

Abstract

A graphical method of checking the adequacy of a generalized linear model is proposed. The graph helps to assess the assumption that the link function of mean can be expressed as a linear combination of explanatory variables in the generalized linear model. For the graph the boosting technique is applied to estimate nonparametrically the relationship between the link function of the mean and the explanatory variables, though any other nonparametric regression methods can be applied. Through simulation studies with normal and binary data, the effectiveness of the graph is demonstrated. And we list some limitations and technical details of the graph.

그림으로 일반화 선형모형의 적합성을 진단하는 방법을 제안한다. 이 그림은 일반화 선형모형에서 연결함수를 설명변수들의 선형결합으로 표현할 수 있다는 가정을 진단할 때 유용하다. 이 그림에서 연결함수와 설명변수들의 관계를 비모수적으로 추정하는 작업이 필요한데, 이를 위해 여러 가능한 기법중에서 부스팅 기법을 적용하였다. 정규분포와 이항분포 자료로 모의실험을 실시하여 새로이 제안한 진단그림의 효과성을 보였다. 그리고 진단그림의 한계와 기술적 세부사항들을 설명하였다.

Keywords

References

  1. Cheng, K. F. and Wu, J. W. (1994). Testing goodness of fit for a parametric family of link functions. Journal of the American Statistical Association, 89, 657-664 https://doi.org/10.2307/2290868
  2. Efron, B. and Tibshirani, R. J. (1993). An Introduction to the Bootstrap. Chapman & Hall/CRC, London
  3. Freund, Y. and Schapire, R. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55, 119-139 https://doi.org/10.1006/jcss.1997.1504
  4. Friedman, J., Hastie, T. and Tibshirani, R. (2000). Additive logistic regression: A statistical view of boosting. The Annals of Statistics, 28, 337-374
  5. Kim, J. H. (2003). Assessing practical significance of the proportional odds assumption. Statistics & Probability Letters, 65, 233-239 https://doi.org/10.1016/j.spl.2003.07.017
  6. Landwehr, J. M., Pregibon, D. and Shoemaker, A. C. (1984). Graphical methods for assessing logistic regression models. Journal of the American Statistical Association, 79, 61-71 https://doi.org/10.2307/2288334
  7. R Development Core Team (2006). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org
  8. Ridgeway, G. (1999). The state of boosting. Computing Science and Statistics, 31, 172-181
  9. Su, J. Q. and Wei, L. J. (1991). A lack-of-fit test for the mean function in a generalized linear model. Journal of the American Statistical Association, 86, 420-426 https://doi.org/10.2307/2290587
  10. Therneau, T. M. and Atkinson, B. (2006). rpart: Recursive Partitioning. R package version 3.1-33. S-PLUS 6.x original at http://mayoresearch.mayo. edu/mayo/research/biostat/splusfunctions.cfm