• 제목/요약/키워드: Manifolds

검색결과 930건 처리시간 0.021초

SASAKIAN STATISTICAL MANIFOLDS WITH QSM-CONNECTION AND THEIR SUBMANIFOLDS

  • Sema Kazan
    • 호남수학학술지
    • /
    • 제45권3호
    • /
    • pp.471-490
    • /
    • 2023
  • In this present paper, we study QSM-connection (quarter-symmetric metric connection) on Sasakian statistical manifolds. Firstly, we express the relation between the QSM-connection ${\tilde{\nabla}}$ and the torsion-free connection ∇ and obtain the relation between the curvature tensors ${\tilde{R}}$ of ${\tilde{\nabla}}$ and R of ∇. After then we obtain these relations for ${\tilde{\nabla}}$ and the dual connection ∇* of ∇. Also, we give the relations between the curvature tensor ${\tilde{R}}$ of QSM-connection ${\tilde{\nabla}}$ and the curvature tensors R and R* of the connections ∇ and ∇* on Sasakian statistical manifolds. We obtain the relations between the Ricci tensor of QSM-connection ${\tilde{\nabla}}$ and the Ricci tensors of the connections ∇ and ∇*. After these, we construct an example of a 3-dimensional Sasakian manifold admitting the QSM-connection in order to verify our results. Finally, we study the submanifolds with the induced connection with respect to QSM-connection of statistical manifolds.

*-CONFORMAL RICCI SOLITONS ON ALMOST COKÄHLER MANIFOLDS

  • Tarak Mandal;Avijit Sarkar
    • 대한수학회논문집
    • /
    • 제38권3호
    • /
    • pp.865-880
    • /
    • 2023
  • The main intention of the current paper is to characterize certain properties of *-conformal Ricci solitons on non-coKähler (𝜅, 𝜇)-almost coKähler manifolds. At first, we find that there does not exist *-conformal Ricci soliton if the potential vector field is the Reeb vector field θ. We also prove that the non-coKähler (𝜅, 𝜇)-almost coKähler manifolds admit *-conformal Ricci solitons if the potential vector field is the infinitesimal contact transformation. It is also studied that there does not exist *-conformal gradient Ricci solitons on the said manifolds. An example has been constructed to verify the obtained results.

The Geometry of 𝛿-Ricci-Yamabe Almost Solitons on Paracontact Metric Manifolds

  • Somnath Mondal;Santu Dey;Young Jin Suh;Arindam Bhattacharyya
    • Kyungpook Mathematical Journal
    • /
    • 제63권4호
    • /
    • pp.623-638
    • /
    • 2023
  • In this article we study a 𝛿-Ricci-Yamabe almost soliton within the framework of paracontact metric manifolds. In particular we study 𝛿-Ricci-Yamabe almost soliton and gradient 𝛿-Ricci-Yamabe almost soliton on K-paracontact and para-Sasakian manifolds. We prove that if a K-paracontact metric g represents a 𝛿-Ricci-Yamabe almost soliton with the non-zero potential vector field V parallel to 𝜉, then g is Einstein with Einstein constant -2n. We also show that there are no para-Sasakian manifolds that admit a gradient 𝛿-Ricci-Yamabe almost soliton. We demonstrate a 𝛿-Ricci-Yamabe almost soliton on a (𝜅, 𝜇)-paracontact manifold.

NUMERICAL ANALYSIS OF FUEL INJECTION IN INTAKE MANIFOLD AND INTAKE PROCESS OF A MPI NATURAL GAS ENGINE

  • XU B. Y.;LIANG F. Y.;CAI S. L.;QI Y. L.
    • International Journal of Automotive Technology
    • /
    • 제6권6호
    • /
    • pp.579-584
    • /
    • 2005
  • Unsteady state free natural gas jets injected from several types of injectors were numerically simulated. Simulations showed good agreements with the schlieren experimental results. Moreover, injections of natural gas in intake manifolds of a single-valve engine and a double-valve engine were predicted as well. Predictions revealed that large volumetric injections of natural gas in intake manifolds led to strong impingement of natural gas with the intake valves, which as a result, gave rise to pronounced backward reflection of natural gas towards the inlets of intake manifolds, together with significant increase in pressure in intake manifold. Based on our simulations, we speculated that for engines with short intake manifolds, reflections of the mixture of natural gas and air were likely to approach the inlets of intake manifolds and subsequently be inbreathed into other cylinders, resulting in non-uniform mixture distributions between the cylinders. For engines with long intake manifolds, inasmuch as the degrees of intake interferences between the cylinders were not identical in light of the ignition sequences, non-uniform intake charge distributions between the cylinders would occur.

Some Properties of Complex Grassmann Manifolds

  • Kim, In-Su
    • 호남수학학술지
    • /
    • 제5권1호
    • /
    • pp.45-69
    • /
    • 1983
  • The hermitian structures on complex manifolds have been studied by several mathematicians ([1], [2], and [3]), and the Kähler structure on hermitian manifolds have been so much too ([6], [12], and [15]). There has been some gradual progress in studying the invariant forms on Grassmann manifolds ([17]). The purpose of this dissertation is to prove the Theorem 3.4 and the Theorem 4.7, with relation to the nature of complex Grassmann manifolds. In $\S$ 2. in order to prove the Theorem 4.7, which will be explicated further in $\S$ 4, the concepts of the hermitian structure, connection and curvature have been defined. and the characteristic nature about these were proved. (Proposition 2.3, 2.4, 2.9, 2.11, and 2.12) Two characteristics were proved in $\S$ 3. They are almost not proved before: particularly. we proved the Theorem 3.3 : $G_{k}(C^{n+k})=\frac{GL(n+k,C)}{GL(k,n,C)}=\frac{U(n+k)}{U(k){\times}U(n)}$ In $\S$ 4. we explained and proved the Theorem 4. 7 : i) Complex Grassmann manifolds are Kahlerian. ii) This Kähler form is $\pi$-fold of curvature form in hyperplane section bundle. Prior to this proof. some propositions and lemmas were proved at the same time. (Proposition 4.2, Lemma 4.3, Corollary 4.4 and Lemma 4.5).

  • PDF

MODULI OF SELF-DUAL METRICS ON COMPLEX HYPERBOLIC MANIFOLDS

  • Kim, Jaeman
    • 대한수학회보
    • /
    • 제39권1호
    • /
    • pp.133-140
    • /
    • 2002
  • On compact complex hyperbolic manifolds of complex dimension two, we show that the dimension of the space of infinitesimal deformations of self-dual conformal structures is smaller than that of the deformation obstruction space and that every self-dual metric with covariantly constant Ricci tensor must be a standard one upto rescalings and diffeomorphisms.

SASAKIAN STRUCTURES ON PRODUCTS OF REAL LINE AND KÄHLERIAN MANIFOLD

  • Beldjilali, Gherici;Cherif, Ahmed Mohammed;Zaga, Kaddour
    • Korean Journal of Mathematics
    • /
    • 제27권4호
    • /
    • pp.1061-1075
    • /
    • 2019
  • In this paper, we construct a Sasakian manifold by the product of real line and Kählerian manifold with exact Kähler form. This result demonstrates the close relation between Sasakian and Kählerian manifold with exact Kähler form. We present an example and an open problem.

On Some Properties of Riemannian Manifolds with a Generalized Connection

  • Dehkordy, Azam Etemad
    • Kyungpook Mathematical Journal
    • /
    • 제56권4호
    • /
    • pp.1237-1246
    • /
    • 2016
  • In this paper we study some properties of submanifolds of a Riemannian manifold equipped with a generalized connection $\hat{\nabla}$. We also consider almost Hermitian manifolds that admits a special case of this generalized connection and derive some results about the behavior of this manifolds.