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Some Properties of Complex Grassmann Manifolds

By In-Su Kim*

§ 1. Abstract

The hermitian structures on complex manifolds have been studied by several mathe-
maticians ([1), (2), and (3}), and the Kahler structure on hermitian manifolds have
been so much too ((6), (12), and [15)). There has bheen some gradual progress in
studying the invariant forms on Grassmann manifolds ((17)).

The purpose of this dissertation is to prove the Theorem 3.4 and the Theorem 4.7,
with relation to the nature of complex Grassmann manifolds,

In § 2, in order to prove the Theorem 4,7 which will be explicated further in §
4, the concepts of t}'\e hermitian structure, connection and curvature have been
defined, and the characteristic nature about these were proved. (Proposition 2.3, 2.4,
2.9, 2.11, and 2.12)

Two characteristics were proved in § 3. They are almost not proved before :

particularly, we proved the Theorem 3.3 :

GL (n+k,C) __ U (n+k)
GL (k,n,C)  Ulk) XU (n)

In § 4, we explained and proved the Theorem 4.7 :

G (CMF) =

i) Complex Grassmann manifolds are Kahlerian.
ii) This Kahler form is ®—fold of curvature form in hyperplane section bundle.
Prior to this proof, some propositions and lemmas were proved at the same time,

(Proposition 4.2, Lemma 4.3, Corollary 4.4 and Lemma 4.5).

§ 2. Preliminaries

Definition 2. 1. Let M be a C~—differentiable manifold, A complex vector bundle

* This researeh is supported by Research grant of Ministry of FEducation in 1982.

45



2 In-Su Kim
w . E—~M over M with rank ¢ consists of a Hausdorff space E and a continuous map
7 satisfying the following conditions :

i) for x&éM, E,=7'(x) is a complex vector space of dimension gq.

ii) for x&M, there is an open neighborhood U of x and a homeomorphism

h:xt(U) Uxce
such that

h(E) C {x} XC9,
and A* defined by the composition

e E, —2

tah x cv —PBI, o

is a complex vector space isomorphism, where the pair (U, k) is called a local trivi-
alization.
Note that for two local trivializations (U,, h,) and (Us, hs) the map
haoha' . (UaNUs) % C* (Ua NUs) < C*

induces a map

gag . (Uaﬂ Ub) GL (qv C)

where for xeU.NUs

8as (x) =hE(RE) 7 . C° ce
i.e., 8q(x)EGL (q,C). The function {g,} are called the transition functions of the
complex vector bundle 7 E — M.
By our definition, it is easy to prove that the transition functions {g,} satisfy the
following compatibility conditions :
1) Bus " Bsy  Bra—doe on UaNUs NUy
i) gws“‘Ia on Uq ,
where the product is a matrix product and I, is the identity matrix of rank ¢,
In general, a set {gas of transition functions satisfying the above compatibility
conditions determines only one complex vector bundle over M ([7]).
Let V be a complex vector space. An hermitian structure on V is a complex valued
function

H:VXV C

such that

D HAG+ A& D =AH (& B +AH (&7
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Some Properties of Complex Grassmann Manifolds

where &, &, 7eV and A6 AeC,
it) for § eV
H(& 7 =H(n §
In particular, if for §=%0) eV
H(, 86 >0

then this hermitian structure is said to be positive definite.

Definition 2.2 Let E—M be a complex vector bundle, An hermitian structure H on
E is a C"-field of positive definite hermitian structure in the fibres of E. That is,
for two C~ sections § and 7, H (&, #) is a complex valued C*-function, Furthermore,
for each x €M and a C=-section v the following hold :

) H(AGH v ) = AH (§x, 7 + AH (va, 7,)
where §,=E8(x) and A, AeC
i) H (&, 7 =H (%, &)
i) H(&, &) = and H(&,, &) >0 if &0
A complex vector bundle with an hermitian structure is called an hermitian vector

bundle.

Proposition 2. 3. Every complex vector bundle 7. E—~M admits a hermitian structure.
Proof. Since M is a differentiable manifold, it has ‘a locally finite covering {U.} '
such that E | U is trivial for each U,. We assume that {e,, ++---oc->e:- ,ent is a frame
defined on Us.. For two C*-sections § and # of the bundle #. E~———M, we shall
define
(6o 1) =3 8 () 7(2),
where $,=g]l & (x) e,{x) and 77x=g}l 7' (x) e (x)
In this case
&' M —>C are C=-functions for i==1, «+eeeerst ,n. Now let {ps} be a C
-partition of unity subordinate to the covering {Uqt.
We put
H (&0 1) =3 Palz) (& %)
then the function
H (670 =D ealx) (3 ) 7))

is a C~-function on M. It is easy to prove that H satisfies condition (i), (ii),
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4 In-Sy Kim

(iti) in Definition 2.2, It follows that H is a hermitian structure on E. Q. E.D.
Let V be a real vector space and suppose that J . V— V is a R-lincar isomorph-
ism such that J*= ], where R is the set of all real numbers and I, is the identity
map of V. Then J is called a complex structure on V. We assume that V is a real
vector space with a complex structure J and consider the complexification V@ C of
V. The R-linear mapping J extendeds to a C-linear mapping of V®C=V_ into itself
by
Ve ———V,
W w
1@ are J(p) @ @
then this C-linear mapping J has the property J?=- -1, Here, we put
Vi p—iJo lve V}
Vi= {p+idv lve V}
Then it is easily proved that
Ve=V@iC=V" gy
Note that for v@a & V® ,C
iv®a) =v®ia, v®a=v@®%
Proposition 2. 4. Under the above situation we have
i) V, =V" which is a C-linear isomorphism
i) vroy*!,
where V, is the complex vector space obtained from V by means of J.
Proof, i) We define
fiVy— Y

W W
v~y ®1—-J(v) @i

then the following diagram commutes

I”J f - V!.C
J @ i

) S

I/J y VU.I

Hence fisa C-linear map (Note that for pe V, iv=dJd{v)). For each element

v®a— 1J{v) @acsV"® since we have
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Some Properties of Complex Grassmann Manifolds 5
a(v@1—J(v) ®i) =v®a—iJ(v) @ @
Therefore f is isomorphism.
ii) Define the conjugate linear mapping

Q : Vl.o________“______’ Vo.l
W
U oo )

then by this mapping we see that V*° =y (Q is called a conjugation) . Q. E.D

Example 2.5. Let C" be the usual Euclidean space of n-tuples of complex numbers
{z', =+, 2" . If we put
2=x'+iy) (', yYeR 1=j=n)
then we can identify C* with R*"= {(x", gt oo Lat ™) 2 =g iyt
Define the mapping
J R e "

by J (2,0, 0, 1, In) = (=3, %, ~ Y2, %2, """, — ¥n, Zn)

then it is easy to prove that J?= —Jun  This J is called the standard complex struc-
ture on R*", The coset space GL (2n, R) /GL (n, C) determines all complex structure
on R by

(A~~~ A JA,
where (A] is the equivalence class of A €GL (2n, R) ((11)).

For a real vector space V of rank n we shall consider the exterior algebras AV,

AV and AV*', Then there are natural injections

AyLe

/\VM:::;AVC
Moreover, if we }et ,,/,\q V be the subspace of A V. generated by elements of the form
uA v, where ue;\V"“ and weq/\V““, then we have the direct sum ;

n

P
AV=T Z~ AV

=0 pig= T

Definition 2.6. Let M be a differentiable manifold of rank 2n, and let 7. T (M)—m

M be the tangent bundle of M. If a differentiable vector bundle isomorphism

J . T (M) T (M)
satisfies the condition which is that for each point x €M
J2 i T:(M) T.(M)
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6 In-Su Kim
isa complex structure for T (M) (T (M)=n"(z) and J,=J | Tx(M)), then J is call-

ed an almost complex structure for M. Also, (M,J) is called an almost complex mani-
fold.

By using Example 2.5 we can prove that every analytic complex manifold induces an
almost complex structure on its underlying differentiable manifold ([16]), which is
called the usual almost complex structure. In the sequel, by a complex manifold we
mean an analytic complex manifold,

Let (M,J) be an almost complex manifold. Then, as before we have the following .

TM) =T M"“&T M, TM),=TONH", TM"=TM"* ((9], (16]).
Furthermore, if we let T*(M). be the complexification of the cotangent bundle T* (M)
of M, we have

T*(M)c=T*M)>°&T* (M)

and natural bundle injections

AT* (M)’ o\
/\ L]
AT* M) — ).

Let ’;‘\QT"‘(M) be the bundle over M whose fibre is “/\qT:(M), then its sections are
the complex valued differential forms of type (p,q) on M. We denote the set of all
sections of ,,/_{ T*(M) by

ree(My~r, AT*M)).
We also put

I (M)=31"%M).

pra=T

Under the above situation we want to recall the exterior derivative

d: ' (M)~ r—(m
Let =, , denote the natural projection operators
Moo T T7(M) (),
where p+g=r. In general we have
d:I'**(M) reeMy=3 I' (M)

r+@=ptg+t

by restricting d to I'*% We define
a:I'"* (M)
3. ™M)

]"P+h Q(M)
‘[w‘q«rl(M)

as compositions
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Some Properties of Complex Grassmann Manifolds 7

9 I (M) ._.______.é_. P91 (M) Npt1 q 9 (M)
é = (M) d 2+ (M) ———«Wn‘a’q‘*‘. . 29 (M)

and
If d=23-+9 then the almost complex structure is said to be integrable .
Since d*=0, we have

o'= 3. 99=- 32

Proposition 2.7. Let M be a complex manifold of dimension n. Then the usual almost

complex structure on M is integrable.

Proof. We denote the underlying differentiable manifold of M by M,. If J is the
usual almost complex structure on M,, it is easy to prove that T (M) is C-linear
isomorphic to T (M,), as C-bundles, Therefore it follows that, as C-bundles,

TM)=T M)"°, T*M)=T*M,)"" (see(9))
A local coordinates (z', -+, 2") of M {dz', -+ ,dz"} is a local frame for T*(M)“°
Hence, by (ii) of proposition 2.4 {dz! +++ ,dz"} is a local frame for T*(M,)*'. Put
Z=x'+iy’ (1=j=q),
then it follows that
dz’=dz’ +idy', dz’=d7 —idy’,
which gives

s 1
dx’aé (dz’ +dz’), dy’ =%

Therefore each s € I»?(M) can be represented by
$=3 Qg g,00,d2° ASTIVAN, PLEAN: SV ARTINAN: 2

1sa<-<i,an
1Sh<S ~<h-gn

(de'—dz’) (1=j=n).

Hence we have

n .

el 2 i i - .
ds=3, | X (=au,s180 T 05 00dy ) Ndz® N Adz Adzh N Ndz™"
WE i< ~<i, sni-1 OX ay
1E < <te &0

n 2]
“E Y ot nende A2 A Adet AdEA - N
SR i, g nOZ

18h<<iemn

n a
RPIPY 2t s dE Az A Adg® Adz A Adz"
TS << 1,snOZ

18h<<Jesn

Note that
‘__:_l_( ] . 1) ] . ,,]; 9 .0 )
oz 2 ar ' ay ' a7 2 ox ay’




8 In-Su Kim

The first term is of type {p+1, ¢), and thus
7

ad da’
a——;;l azj z
and similarly
— n o _J
a—m az; dz
Therefore d= a+3. Q. E. D.

Let M be a (C~)-differentiable manifold of rank n, and let 77 E—>M be a g-dim-
ensional complex bundle over M. For the cotangent bundle T* (M) of M we denote
by I'(E) and I'(T* (M) ®_.E), respectively, the spaces of all sections of E and of the

tensor product T*(M) ® E . A connection is an operator ([8])

CI(E) I'(T* (M)®. E)

satisfying the conditions :

)7 (ntr =P +7(r), "Yur:.€T(E),

i) p(f)=df-1+f(7), Y erE),
where fE€C* (M) (=the space of complex-valued C*-functions defined on M)
and df'7=df®cmm,7

Let U be an open set of M, and let {e, -, e,} be a frame field over U (i, e.,

Vee U, e {x), = , eq(z) are linearly independent in EJ), and let z', --x™ be a local

coordinates in /. Then we can write such that

pe.=Ywle, (15, j=q) (¥ %)
J

n N
where w/ =3 fi*dx* and f7* . U~ C is a C°-function, If we put

=1 ) i
e, , w!ws
e=| w=(w) = | |
€q/ , \ w;"'iqu ’

then (3%3%) can be written
Pe=we , -
and we call w the connection matrix. A section &€ I'(E) is said to be horizontal
if* 7&=0.
Definition 2.8, Under the above situation we put
2 =dw—wN\w
which is called the curvature matrix relative to the frame field e. We have to note

here that

_ w‘l ...... wlq / dwt’ ...... dw;q
dw=d{ : 1 ig | T ‘1 ‘g
We " wy dWQ ...... dwq
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and
_ i w1<1> A il e wlq) _ & -,
w Aw ( il e ( BT (Lwf N i)
Proposition 2.8. d 2+ 2Aw—w/N£=0
Proof. From L=dw—wN\w we get
d@=d*w—dw Nw+w Ndw
and i.e., d8+dw Nw —w Ndw=0
dw = 24w Nw
Since dw Nw= (24w \w) Nw=82Nw+wNwAw
we get d2+82Nw—w N\ L= Q. E.D.

(Note that sometimes d 2+ @A w—wA2=0 is called the Bianchi identity).

Definition 2, 10. Let 7! E—=M be an hermitian vector bundle (Definition 2.2) with
its hermitian structure H. A connection in 7 E——»M is said to.be admissible if

H(& 7) is constant when & and 7 are horizontal sections along arbitrary curves.

Proposition 2. 11. Under the situation of Definition 2. 10, let ¥ be a connection in

7! E—>M with connection matrix w= (w}). Then V is admissible if and only if

dh i 27_‘,hmw’i~zjjhu£5’}c#0 ,

where e= (e, *==" >+, eq) is a frame field of E (dim E=q) and
hy=Hlei e,) =k, (15i,jsq).
Proof. For each section é&€ I'(E) we can write
=3 b,
where & M—=C is a C~— function for j=1, ---, q¢. Therefore, by definition of

connection we have

PE= 3 P(ge) =3 (@ et pe) =5 (a6 5 ¢l e

q
=1 = =1

This implies that

£ is horizontal <>V 5=‘~‘0<:>d5‘+i]l Elwi=0 (xx)
Let us put

E=Ntle,, 7=L7'e,

where &' 7' . M—=C are C~ - functions,
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10 In-Su Kim

Then
H(EnN=H(Y e, X 7%,
i=1 k=1
=3 H e, e.) 7%= hy £ 7*
(281 Kk
Suppose that & and 7 are horizontal, Then by (¥ ¥ 3¥) we have

dH(& 7) = Z} ((dhix) & T+ h (d §) 7"+ hix & (d77))
:':g[(dhuc) 5"7 = Rk Z sjwf- ’7 = hgx Et Zq: 71.‘_’:

i=1
ki ¢
= g (dhuc — 2;‘ hj)[u’; """"" Z hu wx é’i

Hence, we have

dhixr— S hew] — X by wr=0&>H (€, 7) is constant, Q. E. D.
J J

Let M be a complex manifold with dim .M =gn, and let 7. E-—>M be a complex
vector bundle over M with fiber dimension ¢, Since every vector bundle has a conn-
ection ([17]), there is a connection ¥V in the bundle 7! E—=M,  If for local
trivializations {(U, hy), (V,hy), -} all transition functions g of E are holomorphic
then the bundle E is said to be holomorphic.

Let E be a holomorphic bundle, Then we have to take such that

i) each section in I" (E) is holomorphic,

ii) each frame field (e,, -+ . eq) are holomorphic
i.e., the component of y& I'(E) are holomorphic and ¢, s are holomorphic sections,
A connection such that the connection matrix is a matirx of 1-forms of type (1,0)

relative to a holomorphic frame field is called a connection of type (1,0).

Proposition 2. 12. Under the above situation, let H be an hermitian structure of E,
and let w= (w)) be the connection matrix of V. If VV is an admissible connection of
type (1,0), then we have as its connection matrix.

w=oH-H'
and as its curvature malrix.
~ —~30H-H"+ dH-H' N H-H"
Proof. We have already proved that
V is admissible c:: dhy— S hyws 3 iy tx=0
7 7
{see proposition 2. 11). The last expression is denoted by

dH=wH+H'%
54



Some Properties of Complex Grassmann Manifolds 11
in matrix notation, where '@ denotes the transpose of the matrix @. By proposition
2.7. we have d= @+ 9. Hence

OH + dH=wH +H ‘i
In both sides @H and wH are 1-forms of type (1,0). It follows that OH=wH,
i.e., w= 9H-H. Furthermore,
duw = (9+ 3) w=(3+ d) (9H-H)
~ QOH-H" —dHA (8+ 3) H
=~ 00H-H' —3HAOH" ~ dHA OH"
~ -~ Q0H'H"+3H-H'NOH-H" + H-H* N 3H-H"
because of that from

d(H-H™)=8H-H'+H-9H" =0

we get
OH ' =—H" 9H-H

Since 2=dw—w/Nw, we have
Q= —30H-H"'+ OH-H' ANOH-H'+ 0H-H' A OH-H™ — dH-H' A
OH-H' =— 80H-H'+ dH-H' A dH-H" Q. E.D.

Note that is our situation in which we call o7 2 the curvature form of the connection P,

Example 2. 13. We want to illustrate an holomorphic bundle, Let P, be the m-
dimensional complex projective space, To define P, ,take C™"' —{0}, where 0=(0, ---,0),
and identify those points (2°,2', -+, 2®) (€ C™" —{0}) which differ from each other by
a fact, Pn can be covered by m-+1 open subsets U, defined respectively by 20,
0<si=m. In U, (0=i=<m) we have the local coordinates ;{*=2/2' 0<k=m,i%*k.

The transition of local coordinates in U/ U, is given by

5=/ 0 0shsEm b ¥
which are holomorphic functions. There is a natural projoction

¢ CM = {0} ———— Py,
which is a holomorphic line bundle (Note that we call it the universal line bundle over

Px). In U, NU, this bundle has the transition function

g a2
Buivi 8ij J z.: , l:‘:], Ogl,]ém

m
For each (2° <, 2™) € C™"' —{0} the linear form Y} a,z* (a, . constant) has the
=0
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12 In-Su Kim
expression
Z;a,z’=z’(ao¢§° ‘+'"+ai+“‘+am t;m)

in the local coordinates in ¢ ' (U;) (2°#*0), which defines a section in the line

bundle whose transition functions are
) .
C L Z gty
8ii 2! (,; )
We denote this line bundle by H and call the hyperplane section bundie of P,. It is

the negative ([ 4 ))or dual of the universal line bundle,

Definition 2. 14. For a complex manifold M of rank n, let T (M) be the tangent

bundle of M and let H be an hermitian structure on T (M). For a local coordinates

z!, e ,2" of M a natural frame field is given by {él L, ..én t. As before we put
Oz Oz
o o —
hm=H(§'z£. *é;k)=hu (1=i,k=n) .

Then the matrix
H= zﬁ = (hm)

is positive hermitian, The Kahler form is defined by
H=-Shadz’ N ds*,
25

which is a real-valued form of type (1, 1). An hermitian manifold is said to be
Kihlerian if the Kahler form is closed, i.e.,

dH =0.
A complex manifold is said to be Kahlerian if it has an hermitian structure which

is Kahlerian,

§ 3. Some properies of G,(C™*)

Definition 3. 1. The complex Grassmann manifold G {C™*) is the set of all
n-dimensional planes through the origin of coordinate space.

The complex Stiefel manifold V.(C™*)is the set of all n-frames in C™* where an
n-frame in C™* is an n-tuple of linearly independent vectors in C™* There is a
canonical projection

q: Vi (CM¥) oo G (C )
v w
(Z‘. e z") [N NN [zl, e an
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Some Properties of Complex Grassmann Manifolds 13

where [z', -+, 2"} is the n-plane which is generated by z', -+, 2".. Since V,(C™¥*)
is an open set of the n-fold Cartesian product C™% xevece w C"* [(14)). We give
Ga.(C™*) the quotient topology. In fact, G,(C™*) is homeomorphic to an
identification space of Va (C™*) which is the subset of V,(C™*) consisting of all

orthonormal n-frames,

Propesition 3.2. G,(C™*) is a compact topological manifold ({13)) with dimension
nk and there is a homeomorphism
L1 Ga(C™F) G (C™F)
W W
X b~~~ X

where X is the orthogonal k-plane of X .

Proof. Step 1. We shall prove that G,(C™*) is Hausdorff, For a fixed point w
€ C™* and any XE G, (C™*), let p,(X) be the square of the FEuclidean distance
from w to X. That is, if x,, -+, za 1s an orthonomal basis for X then

Pu(X) = <w,w>—(w,2){w,z) -~ (w, zn) (w, za)

L3 “ ¥
where for w={(w', -, w'") and p= (¢!, -, """} in C™*

. n+k
w, v) = ;;,‘ w, D,

Therefore P, G (C"*)—=C is a continuous. i XF Y in G,(C™*), wE X and
w&Y, then 0= p,(X) ¥ p,(Y) in C. Since C is Hausdorff, there exist open set
U) and U {(p,(Y)) such that U (0) Mt U{(pu(Y)) =¢, where U{0) is an open
neighbourhood of 0 in C, and U (p,(Y)) an open neighborhood of 0,(Y) in C, Then
open set o' (U(0)) and p."(U (pu(Y))) separate X and Y,

Step II. Since Vi (C**) is compact and go : V; (C™*) —e G, (C™*) it is clear

that Go(C™*) is compact, where go=q | Vi (C™").

Step [I. We shall prove that each point X, of Go(C™*) has an open neighborhood
U which is homeomorphic to C™ We can regard C™* as the direct sum X, @® X,
Define

U={YE G, (C™*)| X, NY={0}}
i.e., Y& U&> the orthogonal projection p | X, ® X, — X, maps Y onto X,

Then each Y& U can be considered as the graph of linear transformation,
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14 In-Su Kim

T(Y): X, Xo

(see the diagram

T(Y)(x)

Xo

* ).

Therefore we have an one-to-one correspondence
T.U Hom: (Xo, X¢') =C™

We have to show that T is a homeomorphism, Let x,, -, x, be a fixed orthonormal

basis for X,. Then, there exists a unique basis y,, -+, y» of YE U such that

p(y) =x, ", p{yn) =2n
where p | Xo® X¢ X,. It is obvious that the n-frame {y,, -+, yo} depends

continuously on Y. Suppose the identity

yt==xi+T(Y) X

(see the above diagram). Since y, depends continuouously on ¥, it follows that
T (Y) 2. € X¢ depends continuously on Y, That is, T (Y) depends continuously on Y.
Since T~' is a continuous function, G.(C"™*) is a topological manifold with dimension
nk .

Step V. For X€G,(C™*), we shall prove that X*+~~#X is continuous., We
define a function as follows

fiq'U Vi (C™*),
Let {z, --Zx be a fixed basis for Xs. For each (y,, ", y2) €¢7 U

such that [y, -**, yo) = Y, to obtain an orthonomal (n-+k)— frame (y{, =+, ¥n+x) with
Y s ¥ nex €Y' we apply the Gram-Schmidt process to the vector (y, -+, yn,
Ei vty Ex)
Setting

f(_’)’l. ...... , yn)z <y;|+l’......'y;”k)

we have the commutative diagram

qilU-—“-—— f Vk(cn‘m)
q q
11] = cL(c'“*)
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Some Properties of Complex Grassmann Manifolds 15

Since it is clear that f is continuous, g¢.f is also continuous, This implies that L

(Y ~~~Y") is continuous, Q. E.D.
aexy _ GL (ntk, C) _ U(n+k>
Theorem 3.3. Gk(C ) GL (k,n. C) U (k )
where the group GL (k,n, C) consists of all non-singular matrices of the form
( A 0 ) bk
B C b
k n

(the elements at the upper-right corner are zeros) and the group U (n+k) denotes
the set of all (n-+k) X (n-+k) matrices.
Proof, At first we define the map as follows
7% L U (ntk) Vi (C™F),

For the usual orthonormal basis f{er, =+, enss) of C™* and v €U (n-+k)

we put
78 (w) = (ule)), -, ulex)

(Note that e,= (0,+--0,1,0, «=-, 0) € C™*), then 7* is continuous.
(j-th)
Step [. We shall prove that

ik =__Q_("'+'k)
G (€™F) U (k) XU (n)

In order to prove this, we have note that for u,s €U (n+k)

PR (u) =90 (p) &=>u=vw, where w& XU (n),

and Lex U (n) :( (1)1 0 ) bk

Moreover, (77°%) " 77* (u) equals the coset u (1e X U (n)).

In fact, it is obvious that 7% (u) = 7** (p) if and only if for 1=i=k ule,) =
vie;) or v uE€LXU (n) (Note that each element of I, X U (n) does not change ey, -,
and ex). Furthermore since %! (u) =7 (v) <> u=vw (w € X U(n)) we have
(784%) 7« 9% (u) = u (LX U (n)). Since 9% U (n+k)——— Vo (C"**%) is surjec-
tive, we have the homeomorphism

Q¥ U (nt+k) mod U () ———— Ve (C"F*)
Hence we have continuous surjection
9.Q%" 1 U (ntk) / Uln) ——— Ge(C™")
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Next we have to note that for u mod U (n) and v mod U (n)

9 0" (u) = G4 O === v=us,s,,
where s,&€ X U (n) and s, U (k)
This is proved as follows. For Q' (u) = (u,, -+, ux) (u,=u{e;)) and
Q" (v) = (v, =+, va) (=0 (es))

(uy, =y u) = (o1, -, vx) in Ge(C™*) === u;=3s,(v), €U (k)
By the above description

u,=u(e;) = us,(e;) , 1sisk

s (vy) = us, (e;) , k+l1sisntk
for s,€U(n). Hence, from u,=s,{v,) we get us,= s, or v=us,s;' (Note that s, &
U (k) => s;'€U(k)). Therefore we have the homeomorphism

W Ut k) / UGk) X U(n) Ge (C™F)

W W

u mod U (k) X U(n) b~~~ [ule)), -+, u(ex) )

Step [I. We shall prove that

neky GL fﬂ+k, g;)
Gk(C ) GL(k,n, C)

At first we have to note that the group GL (%, n, C)is the subgroup of all element of
GL (n+k, C) leaving fixed the k-dimensional subspace of C™* spanned by the first

coordinate vectors. The map

ge*: GL (nt+k, C) Gr(C™F)
[\ W
u MJWV\N[u(ei)’ rev, u(e)c)]

is a continuous surjection. It is clear that
(em* )™ @* (u) =uGL (k, n, C)
and thus the map

¢it®: GL (n+k, C) mod GL (k,n C) Gx (C™F)

W w
UGL (k, n, (w> [N S [u(ez) T u(ek)]

is a homeomorphism.
: Q. E..D.
§ 4. Kihlerian Structure on G,,, (C"")

Each element of Gpy (C™') (n2k) can be represented by a non-zero decomposable
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Some Properties of Complex Grassmann Manifolds 17

(k+1) — vector

A=Xo A A X (%0)
up to a constant (j.e., since 4&€ Gn, (C™') is a (k+1)-plane through the origin
we can take k-+1 vector X, +-, Xx on 4 such that
i) Xo, -+, Xx are linearly independent,
ii) 4 is spanned by (X, .-+, Xx)) .
Let eq, **, ex be a fixed from in C™' Then we can denote

A:Za; Pay.apea, AN\ eay 0% ay, -, a<n),

where since  Pg,.a,-a-ax = — B, a,~ay-ax P's are skew-symmetric in their indices,
The Pa-ax are called the Cayley-Plucker-Grassmann coordinates in Gy, (C™'). Put
v= 7.1 Cx+1 then there is an imbedding map
Grn (C™1) > Puy
W

W
Azza; Poy-ax€a A +++ A €ay =~ (Po.x, **, Pnx-n)

where (P, ..x.**, Pax--n)is a homogenous coordinate in P,_, ([4), (16)).

ForZ= (2%, 2", W= (w*, -, w") € C* | we define the inner product by
(ZW)=2"®"++2"6"= (W, Z) = (W, Z)

By using these we want to define an hermitian structure in the bundle

% . E, Gra (C™),

where
Eo={(y, 4) € C"' X Gy (C™) | yAA=0, i e 6 ve A} .
For two elements
A=X, N NXn M=Y NN Y, (%)
in Grn (C™'), we define the hermitian scalar product
(A4, M) ~=det((Xa, Ya)), (0sa, f<k)
then ( 4, M) depends only on 4 and M and which is independent of the ways that
they are decomposed in (%),

We will introduce the notations

LAMI =1 CAaM |, d]=(44) |
where | 4| is called the norm of 4. Then we have the Schwartz inequality
|4, M| =4 |M|.

Definition 4. 1. An unitary (h+1) frame is an orderd set of A+1 vectors Z,, =+, Zx
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18 In-Su Kim

satisfying
<Zi.Z;>=au, 0=i,j=h
If h=n, then Z,,-**,Znis called a unitary frame. By this definition we easily see that

Ul(n+1) is the set of all unitary frames (Note that if Z; = (28, 21), -, Z,

={20, +-, z%) is a unitary frame, then

PLETHIY P
' ] €Ul ).
Z o, 2%,

: : . . r e
In our situation we have the fiber-rings ((4), (7)),
A

Ve, (€™ Ge, (™Y, (3% 3%)

Uint1)
where for (Z, -, Zw € Uln+1)
ALy, oo, Zo) = (Z, o, ZY €V, (C™)
A2y, e, Zy) = Zo N N ZhE Gy, (C™
For (Zy, -, Zpn) € U (n+1), we define
b= { dZa, Zs) , 0

A
i
3

a, 3

Proposition 4.2. Under the above definition the following hold.
i) oot Bsa= 0
li) dZax; HaﬁZg

i) dba=3 Oy A Os, 0<ea B, y<n

Proof. i) Since {( Zy, Zs) = 0aw we have
d( Ze Zs) = (dZa, Zs)+(dZs, Za)

and thus we have faat Oaa=0.
ity For(Zs, Z,, -, Zyy € U(n+1) we put

...................

Then

IS an unitary matrix,

62



Some Properties of Complex Grassmann Manifolds 19

So we have
2z 1222;‘2}':"“ S,
k x
From los= (dZs, Zs) we have
5 O Zo=3] (dZ0, Za) Za= (dadal o+ dal 5 ?‘7) oo

a

I
+ (/dz;’ 2,‘: + et dz: 22 (?n )

\2]
N ( dzg (20 2 4o+ 20 2p) ot dea (2020 + o+ 57 2n)
dzl (200 F btz Ea)b et ded (202 20 E) )
d 0
~( %) =dz,
dzg

iii) Since & =0, from (ii) we have

g dﬂaﬂzd__z; Hms/\ de=0 ’

and thus
S dOusZs= 2; Ous N dZs
8
= Zﬁl (9ma/\2; by Z,)
= (Zy“ Oy N\ Ove) Zg
This implies that d8m= 3 Ou/\ s . Q. E.D.

5
Under the projection g°A ((%%)), a form w on Gen (C™') is completely deter-
mined by the image (z°A)*w ([4)). In order to study about forms on Gk (c™),
we may study about forms on U (n-+1).
Let 4 be an element of Gk, (C™') such that
A=Xg NN\ Xy,

We put
A
A N
4" % :
then Zy, -+, Zy is an unitary (k+1) — frame.

Lemma 4.3. The following hold.
) (ddo, o) =5 bua= — 5 ba,
i) (ddo, d 4a) = (3 Bao) (3] ba) + 53 Our B,
where 0= ask, k+1<y<n and dd, in ii) is (x cA)* (dA). Furthermore, the

multiplication of differential forms in ii) is in the sense of ordinary commuiative

multiplication.
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Proof. Since
ddo=dZy NZ N oo N Zyt oot Zy N N d Zy

";/dAu, 444)> == <dZ(), Zq"‘/ s /\(dZ(), Z,\\/ 1

AZy, 2y o, Zn)

P
= Za e = - Z F};’a

[24

(by (i) of proposition 4.2.).
i) Let (Z, -, Za.

A= (Z,, --

Then we may regard Zy.,, -

v Zn) €U (n41) be an element in (u-3)"'4,. We also put

Yy -Jn)

. Zn as constants, Then we have the following :
<dA0, dAﬁ > = (\dZO N Z]/\ EAN Zn+"'+ Zo FANTEWAN de/\ deﬂ VARTRWAN Zn’
dZy N N2yt o ZyN o N AdZp/N Zry Ao N Zn)

(dZotdZ‘Q .......... (dZy, Zy) (dZy, Zy) {dZ,, dZ,)- """'<dZu. Z)
(Z), dZs) 1.0 weermeen)

—— : 0 .. : O ‘~.£‘7‘d‘z >O '0
<va dZn >0.“..........O"1 O (Zn' d/ ) O .G_(l)

(dZy, Zy)meven /dZo,dZ,ns ....... (dZy, Zy) (Zo,dZy) (R B |
T B 1 R 0 (2, 420) (A2 7))l d 2, 2,)

1 N Y
) 107 0 | RS T e Sl
(00 (2. dg,“ — S
: Pl T, o L)
0 0l Zu, dZw Oiind (Zn,dZy) (0 (evorerenn 1

0 0 ( Z, dZ,,> Qe 0

0 ;

0 1 5 [ ETTTTROReN 4

L
0~
0--
(dZ,c, Z‘,> -(dZy, d/,c) \dZ,c Zn)
Qe 1

O O < Z‘n, de :::(.}' ']._
= (dZs,dZs) + (dZy, Zy) {Z,,dZ,) +

A dZo, Zo) { Ly, dZy) 4o oen- +
dZ,, 2% (Zy, dZx) + -

F{dZy, dZi) = (T B,a) (5 8a)+ 3, bar Oy
o o a
because of that
D) (dZa, dZg) = <§; OusZs, );HaaZ»
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=% bes - Bap . (0= B=n, 0% ask)
ii) 0ma§aa+ aaagaaﬁ(), (0_’;;01,[? =k)
i) (dZa, Za) (Zs,dZs) = Boa Oss, (0=a, B<k) Q.E D,
Corollary 4.4. We have the following
(dds, ddo) — (dds, &) (M, d A X'Zyaavyav.
where 0=ask and k+15 y=n
Proof. By i) of LLemma 4. 3.
(ddy, 4y) =3 Ooa (4o, d4y) ”"’Z:.; [
a
we have
(d 4y, Ao) (4, dAy) = (2; Oon) (Z;. éﬁli) .
Therefore, it follows from ii) of Lemma 4.3. that
(d Ao, dAs) — (d Ay, A) (Ao, d As> =5 Oy Oay
Y
where 0=a<k and k+1sy=n. Q. E. D.
Lemma 4.5, If we put
Ao = A /IAI .
then we have the following
G (@444 (A8 - A48 A A =T bl
where 0<a<k and k+1=y<n .
Proof. Form l;]-]-l we get
.44 4 1 \ T 100 s
d 4= AT A dlal, dl4 =5TAl ((dA, Ay +ddA, 4>y (%%

Let us put
d 14 = the 1-form with conjugate coefficient of d 141,

Then we have the following.

‘/ A dA A 1 A 1
{ 0 o\i - o o, g ¢ Y e et o s | »--{w P 1 -5 A
dA ,d/l, \dA , '10, \Ae‘dAo, l/” X‘Alzd u/.”, A YK d 1A>
dA 4 A A d A4 A .
) <!Ai /LR '7}1"'f> <!A o ped A >
1 Al d 4 d 4 -d Al

—

:’—'“D‘ﬂ—z\/\d/l, dA\ = -}ﬂ‘x {(11‘1, A\ o g"A'[*J "\’A, dA\ e e 'TZ'P"“ ¢ A' A>

1 . dldl (1 dial
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‘—""‘71"“ E (IA, (1/1) £ ./1, A\ - {AT‘ E JAV A s A, (1/1 ¥ . ‘;:/‘l’rq ! l[ A. A :
14 , 14 L dlal o
*(J?f“ (dd, A4, 4) ‘{A‘ (A A4 A d

}}117“ 1idA, dAy A A dA A4 dA

Therefore, from Corollary 4.4 our result is obtained, Q. kD,
Definition 4.6. For A=X, A A X, €Gy., (C™') with

Ao=A) (A= Zy NN Zy |
we define T H(X, X, ) dZ, N\ dZ, = (dA, dA LA, A - dd Ay A d4)

= 41 5 O Oy EEE L
a.

where 0<i,j,a"k and k+1<y7<n . Then

SSH(X,, XV dZ,NdZ = dAd,dA: 4, 4 - A dA dA A

AR CEA TE A EdA

which means that
HiX,, X ~H(X, X.
Therefore H is an hermitian structure in Ge, (O

Also, the lefr side of
(% %% %) implies that H is positive definite,

Theorem 4.7. i} The complex Grassmann manifold is Kihlerian .
{See Definiton  2.14)

ii) As the statements in the first part of this scction Gy, (") is imbedded in
P.. where v= ,,,Cx: — 1. Let the curvature form of the hyperplane section bundle

(see Example 2.13)over Gy, (C™') C P, defined by the norm | 4| denote by A
Then
wA = the Kahler form H,x of Ge, (C™1 .

Proof. i) From Definition 4.6., we have

[}k 3712«27 (7N Hay (Sece Definition 2,14 )
a.

_1 ,
"zid‘f; )

{See i11) of Proposition 4,29
Hence
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Some Properties of Complex Grassmann Manifolds 23
and thus Ge, (C™') is Kahlerian.
it) At first we shall prove that

(ddo, &) = T Boa= (2~ 3} log |4].

From (%),
@do, 4= L eata, A
g (A4 A) A By = L oa, 4y (57 D).

On the other hand

) _é> log l/l! == (a—-g) l()g \ A, A>;

T 168 log(4, 1)
- 5,{7]»2 (804, 45 ~3(4, 4))
=2—|j14~,~2 ((ad, 4) ~ (24, 1))

As Example 2. 13)

C*— {0} P,

defines the universal line bundle over P, and an hermitian structure is introduced in
this bundle by the norm 14l. The restriction of this bundle 1o G, (C™') CP, is the
negative of the hyperplane section bundle means in i) and [4]" define an hermitian
structure on it {See Example 2. 13},
In proposition 2.12 if g=1
H=(h) ., 2=(2)
and
Q= -93H-H™' +3H-H ' ABH-H"
canh be written
2= —~—a§ logh,
because of that

FE logh = -~ 8(‘%}}“ ) = }“llo' @8h-h —2h /\gh)
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=33 h"h ™ +3hh ' ABh+h'"
Hence we have

LAY S-S
A = 2"!2 5 aalogh,

where h=141"% is the square of the norm of local holomorphic section (Example 2.13).

There are
- AL Al ey -2
A= 5 i aolog 14!

L

o

aélm: |A|

. 1 -
:,_';aa;(,glA| :---”'Hk Q. E. D.
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