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Abstract. In this paper we study some properties of submanifolds of a Riemannian

manifold equipped with a generalized connection ▽̂. We also consider almost Hermitian

manifolds that admits a special case of this generalized connection and derive some results

about the behavior of this manifolds.

1. Introduction

The Levi-Civita connection ▽ is an ideal connection on a Riemannian manifold
(M, g) that gives many facilities for calculus on manifolds. However, there are many

other connections ▽̃ on (M, g) with less abilities.

The notion of semi-symmetric linear connection on a diferential manifold was
introduced in [6]. Hayden also defined and studied subspaces of space with torsion
or semi-symmetric metric connection in [8]. Later, a number of authors published
many papers on this topic until now (for example see [7], [9], [10]). Some of them
introduced another connections such as quarter-symmetric recurrent connection,
semi-symmetric recurrent metric connection, Weyl connection and vice versa.

Tripathi in [11] introduced a new connection which unifies all the previously
connections and some other connections not introduced so far. He also derived
curvature tensor of this connection.

This paper has two main purposes. The first is to extend the some results
of [5] about submanifolds of a Riemannian manifold with a semi-symmetric non-
metric connections to the these submanifolds with the generalized connection which
introduced in [11].
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Secondly, almost hermitian manifolds and because of their nice topological prop-
erties Kähler mnifolds have been studied extensively (see for example [2],[3]). Thus
it is worthwhile to study some properties of almost hermitian manifolds which en-
dowed by this generalized connection.

The torsion tensor T̃ of a given connection ▽̃ on M , is defined by

T̃ (X,Y ) = ▽̃XY − ▽̃YX − [X,Y ]

The connection ▽̃ is called symmetric or torsion-free if T̃ ≡ 0, otherwise it is
called non-symmetric. The connection ▽̃ is called compatible with metric or briefly
metric if ▽̃g = 0, otherwise it is called non-metric. As we know, the Levi-Civita
connection ▽ is a metric and symmetric connection. However, there are connections
which are either non-symmetric or non-metric (see for example [1], [4], [9]).

Let k1, k2 be non-zero real functions on M , η, η1, η2 are 1-forms on M and ψ is
a (1, 1) tensor field on M . Let

η(X) = g(E,X), η1(X) = g(E1, X), η2(X) = g(E2, X),

g(ψX, Y ) = Ψ(X,Y ) = Ψ1(X,Y ) + Ψ2(X,Y )

where Ψ1 and Ψ2 are symmetric and skew-symmetric parts of the (0, 2) tensor Ψ
such that

Ψ1(X,Y ) = g(ψ1X,Y ), Ψ2(X,Y ) = g(ψ2X,Y ).

Considering {k1, k2, η, η1, η2, ψ}, Tripathi in Theorem 2.1 of [11], proved that

there is a unique connection ▽̃ on M given by

(1.1)
▽̃XY = ▽XY + η(Y )ψ1X − η(X)ψ2Y − g(ψ1X,Y )E − k1{η1(X)Y+

η1(Y )X − g(X,Y )E1} − k2g(X,Y )E2

with
T̃ [X,Y ] = η(Y )ψX − η(X)ψY

and

(▽̃Xg)(Y, Z) = 2k1η1(X)g(Y, Z) + k2{η2(Y )g(X,Z) + η2(Z)g(X,Y )}.

This connection is a generalized connection because in special cases, we obtain
other well-known connections such as quarter-symmetric metric connections, semi-
symmetric metric S-connection, Weyl connection and etc. [11].

2. Submanifolds of a Riemannian Manifold with a Generalized Connec-
tion

Let M be an n-dimensional submanifold of an (n+ k)-dimensional Riemannian

manifold (M̃, g). With the Levi-Civita connection ▽ on M̃ , we have the Gauss
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formula as follows,
(2.1) ▽XY = ▽̄XY + h(X,Y )
where X,Y ∈ TM and ▽̄ induced Rimannian connection on M . Now consider
M̃ with the generalized connection ▽̃, that is introduced in (1.1). Let ▽ be the

induced connection from the ▽̃ on M and h̃ is the second fundamental form of M
in M̃ . By using notations above, we define a formula similar to Gauss’s, as follows:
(2.2) ▽̃XY = ▽XY + h̃(X,Y )
where X,Y are TM . The mean curvature vector of M with respect to Levi-Civita
connection ▽ and ▽̃ respectively defined as H = 1

n trace h and H̃ = 1
n trace h̃.

More precisely, let {e1, e2, ..., en} be an orthonormal basis of the tangent space
of M , so

H =
1

n

n∑
i=1

h(ei, ei), H̃ =
1

n

n∑
i=1

h̃(ei, ei)

If h̃ = 0 then M is called a totally geodesic submanifold of M̃ with respect to ▽̃. If
H̃ = 0 then M is called a minimal submanifold of M̃ with respect to ▽̃.

Furthermore if h̃(X,Y ) = g(X,Y )H for any tangent vectors X,Y , then M is

called a totally umbilical submanifold of M̃ with respect to ▽̃.
In this paper we use notations X,Y, Z for tangent vector fields to M and nota-

tions ζ, ν for normal vector fields on M .
The vector fields E1, E2, E3 and E on M decomposed uniquely into tangent

components E⊤
1 , E

⊤
2 , E

⊤
3 and E⊤ and normal components E⊥

1 , E
⊥
2 , E

⊥
3 and E⊥,

respectively.
Using definition of generalized connections ▽̃, (2.1) and (2.2), we get

(2.3)
▽XY = ▽̄XY + η(Y )(ψ1X)⊤ − η(X)(ψ2Y )⊤ − g(ψ1X,Y )E⊤

−k1{η1(X)Y + η1(Y )X − g(X,Y )E⊤
1 } − k2g(X,Y )E⊤

2

(2.4)
h̃(X,Y ) = h(X,Y ) + η(Y )(ψ1X)⊥ − η(X)(ψ2Y )⊥ − g(ψ1X,Y )E⊥

+k1g(X,Y )E⊥
1 − k2g(X,Y )E⊥

2

Using (2.1) we have the following Theorems.

Theorem 2.1. Let M̃ be a Riemannian manifold admits the generalized connection
▽̃ in (1.1). Suppose that M is a submanifold of M̃ with connection ▽ induced from

▽̃. Then ▽ is the generalized connection(1.1) on M .

As a direct consequence of 2.4, we obtain the following theorem.

Theorem 2.2. Let M̃ be a Riemannian manifold equipped with the generalized
connection ▽̃ in 1.1. Suppose that M is a submanifold of M̃ with connection ▽
induced from ▽̃.

Furthermore, let E1, E2, E, ψ1X,ψ2X,ψX be tangent to M for all X ∈ TM .
ThenM is a totally geodesic (respectively, totally umbilical) submanifold with respect
to the Levi-Cevita connection if and only if M is a totally geodesic (respectively,

totally umbilical) submanifold with respect to ▽̃. Furthermore, M is a minimal
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submanifold with respect to the Levi-Cevita connection if and only ifM is a minimal
submanifold with respect to ▽̃.

Remark 2.3. In some special cases, for example one case of semi-symmetric re-
current metric connections or one case of semi-symmetric non-metric connection
without any restriction, M is a totally geodesic (respectively, totally umbilical)
submanifold with respect to the Levi-Cevita connection if and only ifM is a totally
geodesic (respectively, totally umbilical) submanifold with respect to ▽̃. Further-
more, M is a minimal submanifold with respect to the Levi-Cevita connection if
and only if M is a minimal submanifold with respect to ▽̃.

Let ζ be a normal vector field on M . We have

(2.5) ▽̃Xζ = ▽Xζ + η(ζ)ψ1X − η(X)ψ2ζ − g(ψ1X, ζ)E − k1{η1(X)ζ − η1(ζ)X}.
We know that ▽Xζ = −ĀζX +▽⊥

Xζ, where Āζ is the shape operator of M in
the direction of ζ. If we assume ψ1X is tangent to M , for all X ∈ TM and ψ2ζ is
normal to M for all normal vector field ζ on M then we can consider a (1, 1) tensor

Ãζ on M in the direction of ζ and with respect to the generalized connection ▽̃
that define as follows.
(2.6) Ãζ = Āζ − η(ζ)ψ1 − k1η1(ζ)I

Therefore we can define Weingarten formulas with respect to the generalized
connection ▽̃ as follows.

(2.7) ▽̃Xζ = −ÃζX +▽⊥
Xζ − η(X)ψ2ζ − k1η1(X)ζ

It can be easily seen for all generalized connections, g(ÃζX,Y ) = g(X, ÃζY ) In
the general case, we have

g([Ãζ , Ãν ]X,Y ) = g([Āζ , Āν ]X,Y ) + η(ν)g(αζX,Y ) + η(ζ)g(ανX,Y )).

where αζ = Āζψ1 − ψ1Āζ for unit normal vector field ζ on M .
From now on, we consider for simplicity the cases that ψ1X is tangent to M ,

for all X ∈ TM and ψ2ζ is normal to M for all normal vector field ζ on M .
Now we plan to study tensor curvature of a submanifold Mn of a Riemannian

manifold M̃n+k that equipped with the generalized connection ▽̃.
Let R̃ and R denote, respectively, the curvature tensor of M̃ with respect to the

generalized connection ▽̃ and the curvature tensor of M with respect to induced
connection ▽ of ▽̃, so we have

R̃(X,Y )Z = ▽̃X▽̃Y Z − ▽̃Y ▽̃XZ − ▽̃[X,Y ]Z

R(X,Y )Z = ▽X▽Y Z −▽Y ▽XZ −▽[X,Y ]Z

where X,Y, Z ∈ TM . Substituting (2.2) in R̃(X,Y )Z and use of (2.7), after sim-
plification we have,

(2.8)

R̃(X,Y )Z = R(X,Y )Z + h̃(X,▽Y Z)− h̃(Y,▽XZ)− h̃([X,Y ], Z)−
Ah̃(Y,Z)X +Ah̃(X,Z)Y +▽⊥

X h̃(Y, Z)−▽⊥
Y h̃(X,Z)−

η(X)ψ2h̃(Y,Z) + η(Y )ψ2h̃(X,Z)− k1η1(X)h̃(Y,Z)

+k1η1(Y )h̃(X,Z)
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Since we assume that ψ1X is tangent to M , for all X ∈ TM , (2.4) reduced to

(2.9)h̃(X,Y ) = h(X,Y )− η(X)ψ2Y − g(ψ1X,Y )E⊥ + k1g(X,Y )E⊥
1 − k2g(X,Y )E⊥

2

Since g(ψ2Z, ζ) = g(Z,ψ2ζ) for every normal vector field ζ on M , hence, from
(2.8) and (2.9) we reach to the following equation.

(2.10)

R̃(X,Y, Z,W )= R(X,Y, Z,W )− g(h(Y, Z), h(X,W )) + g(h(X,Z), h(Y,W ))
−k1{g(Y,Z)η1(h(X,W ))− g(X,Z)η1(h(Y,W ))}
+k2{g(Y,Z)η2(h(X,W ))− g(X,Z)η2(h(Y,W ))}
+g(ψ1Y,Z)η1(h(X,W ))− g(ψ1X,Z)η1(h(Y,W ))

Now we can compute the relation between sectional curvatures of M̃ and M
when we consider the generalized connection ▽̃ on M̃ . Let X and Y be orthonormal
unit tangent vector fields on M , so by (2.10), we have

R̃(X,Y, Y,X)= R(X,Y, Y,X)− g(h(Y, Y ), h(X,X)) + g(h(X,Y ), h(Y,X))
+η(Y )g(ψ2Y, h(X,X))− η(X)g(ψ2Y, h(Y,X))−
k1{g(Y, Y )η1(h(X,X))− g(X,Y )η1(h(Y,X))}+
k2{g(Y, Y )η2(h(X,X))− g(X,Y )η2(h(Y,X))}+
g(ψ1Y, Y )η1(h(X,X))− g(ψ1X,Y )η1(h(Y,X))

Furthermore by assumptions g(ψ2X, ζ) = −g(X,ψ2ζ) = 0 , so we get

R̃(X,Y, Y,X)= R(X,Y, Y,X)− g(h(Y, Y ), h(X,X)) + g(h(X,Y ), h(Y,X))
−k1η1(h(X,X)) + k2η2(h(X,X)) + g(ψ1Y, Y )η1(h(X,X))
−g(ψ1X,Y )η1(h(Y,X))

Therefore we obtain the following formula for relation between sectional cur-
vature K of M and sectional curvature K̃ of M̃ with respect to the generalized
connection.

(2.11)
K̃(X,Y ) = K(X,Y )− g(h(Y, Y ), h(X,X)) + g(h(X,Y ), h(Y,X))

−k1η1(h(X,X)) + k2η2(h(X,X)) + g(ψ1Y, Y )η1(h(X,X))
−g(ψ1X,Y )η1(h(Y,X))

In the special case when ψ1 = 0, we have

K̃(X,Y ) = K(X,Y )− g(h(Y, Y ), h(X,X)) + g(h(X,Y ), h(X,Y ))−
k1η1(h(X,X)) + k2η2(h(X,X))

Moreover, if E1 and E2 are tangent vector fields to M then,

K̃(X,Y ) = K(X,Y )− g(h(Y, Y ), h(X,X)) + g(h(X,Y ), h(X,Y ))

Finally, we have the following theorem.

Theorem 2.4. Let M be a submanifold of a Riemannian manifold M̃ admitting
the generalized connection ▽̃. Moreover, let for I ⊆ R, λ : I → M ⊂ M̃ be a
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geodesic, U be the unit tangent vector field of λ in M and X tangent vector fields
to M . If E1 is tangent to M then K̃(U,X) ≥ K(U,X). Furthermore, if X is a
unit tangent vector field which is parallel along λ in M and orthogonal to U then
the equality holds if and only if X is parallel along λ in M̃ .

3. Some Properties of the Generalized Connection on Almost Hermitian
Manifold

Let M̃ be an even dimensional Cr Riemannian manifold. An almost complex
manifold M̃ is defined by a structure tensor J of type (1, 1), satisfying J2X = −X
for any vector field X on M.

Furthermore, if M̃ endowed with a non singular Hermitian metric g, i.e.

(3.1) g(JX, JY ) = g(X,Y )

for every vector fields X and Y on M , then it is called an almost Hermitian
manifold with almost Hermitian structure {J, g}.

If the exterior derivative dJ of J vanishes, then M is called an almost Kähler
manifold. Further, if ▽J = 0 for the Levi-Civita connection ▽ that defined by g,
then M is called a Kähler manifold.

In this section, we consider an special case corresponds to the case ψ = ψ1 =
ψ2 = Id of generalized connection and denote it by ▽̆.

(3.2)
▽̆XY = ▽XY + η(Y )X − η(X)Y − g(X,Y )E − k1{η1(X)Y+

η1(Y )X − g(X,Y )E1} − k2g(X,Y )E2

We will call this connection as S-generalized connection.

Theorem 3.1. Let M̃ be an almost Hermitian manifold which admits S-generalized
connection ▽̆. Then M̃ is a Hermitian manifold if and only if

(▽̆JXJ)(JY ) = (▽̆XJ)(Y )

Proof. By covariant derivative of J with respect to connection ▽̃, we have

(▽̆XJ)(Y ) = ▽̆XJY − J(▽̆XY ).

Now from definition of generalized connection, (3.2) and linearity of J , we get,

▽̆XJY =▽XJY + η(JY )X − η(X)JY − g(X, JY )E + k1{η1(X)JY+
η1(JY )X − g(X, JY )E1} − k2g(X, JY )E2

and

J(▽̆XY ) =J(▽XY ) + η(Y )JX − η(X)JY − g(X,Y )JE + k1{η1(X)JY+
η1(Y )JX − g(X,Y )JE1} − k2g(X,Y )JE2
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So after simplification we obtain

(3.3)
(▽̆XJ)(Y ) = (▽XJ)(Y ) + η(JY )X − η(Y )JX − g(X,JY )E + g(X,Y )JE

+k1{η1(JY )X − η1(Y )JX − g(X, JY )E1 + g(X,Y )JE1}
−k2{g(X, JY )E2 − g(X,Y )JE2}

In similar way, we have

(3.4)
(▽̆JXJ)(JY ) = (▽JXJ)(JY ) + η(J2Y )X − η(Y )J2X − g(JX, J2Y )E+

g(JX, JY )JE + k1{η1(J2Y )JX − η1(JY )J2X − g(JX, J2Y )
E1 + g(JX, JY )JE1} − k2{g(JX, J2Y )E2 − g(JX, JY )JE2}

By using relations J2X = −X and g(JX, Y ) = −g(X,JY ) for every vector

fields X,Y on M̃ , subtracting (3.3) from (3.4), gives us

(3.5) (▽̆JXJ)(JY )− (▽̆XJ)(Y ) = (▽JXJ)(JY )− (▽XJ)(Y )

But an almost Hermitian manifold is a Hermitian manifold, if and only if the
righthand side of equation (3.5) is zero. So we have the result. 2

If we define J̃(X,Y ) = g(JX, Y ) for vector fields X and Y on M̃ , then

J̃(JX, JY ) = g(J2X, JY ) = −g(X, JY ) = g(JX, Y ) = J̃(X,Y ).

Now, if we set

τ̃(X,Y, Z) = (▽̆X J̃)(Y,Z) + (▽̆Y J̃)(Z,X) + (▽̆Z J̃)(X,Y ),

τ(X,Y, Z) = (▽X J̃)(Y,Z) + (▽Y J̃)(Z,X) + (▽Z J̃)(X,Y ),

µ(X,Y, Z) = (η(X) + k1η1(X))J̃(Y,Z),

then we have the following theorem.

Theorem 3.2. Let J̃ is closed in an almost Hermitian manifold with respect to
both S-generalized connection ▽̆ and Levi-Civita connection ▽. So we have

τ̃(X,Y, Z) = 4{µ(X,Y, Z) + µ(Y, Z,X) + µ(Z,X, Y )}.

Proof. By definition, we have

(▽̆X J̃)(Y,Z) = (▽X J̃)(Y,Z)− J̃(▽̆XY −▽XY,Z)− J̃(Y, ▽̆XZ −▽XZ).

But, (1.1) implies that

(3.6)

(▽̆X J̃)(Y, Z) = (▽X J̃)(Y, Z)− η(Y )J̃(X,Z) + η(X)J̃(Y, Z)+

g(X,Y )J̃(E,Z) + k1{η1(X)J̃(Y,Z) + η1(Y )J̃(X,Z)−
g(X,Y )J̃(E1, Z)}+ k2g(X,Y )(E2, Z)− η(Z)J̃(Y,X)

+η(X)J̃(Y, Z) + g(X,Z)J̃(Y,E) + k1{η1(X)J̃(Y, Z)+

η1(Z)J̃(Y,X)− g(X,Z)J̃(Y,E1Z)}+ k2g(X,Z)(Y,E2).
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We use the circular permutation X,Y, Z on (3.6) to obtain,

τ̃(X,Y, Z) = τ(X,Y, Z) + 4{µ(X,Y, Z) + µ(Y, Z,X) + µ(Z,X, Y )}.

Now, since J̃ is closed with respect to ▽, i.e. τ(X,Y, Z) = 0, so the proof is
complete. 2

Theorem 3.3. The Nijenhuis tensors of S-generalized connection ▽̆ and Levi-
Civita connection ▽ on an almost Hermitian manifold are coincide.

Proof. By applying the definition of Nijenhuis tensor with respect to Levi-Civita
connection on the almost Hermitian manifold , we have
(3.7) N(X,Y ) = J((▽Y J)X)− J((▽XJ)Y ) + (▽JXJ)Y − (▽JY J)X

But by using (1.1), we have

J((▽Y J)X) =J((▽̆Y J)(X))− η(JX)JY − η(X)Y + g(Y, JX)JE+
g(X,Y )E − k1{η1(JX)JY − η1(X)Y − g(JX, Y )JE1

−g(X,Y )E1}+ k2{g(JX, Y )JE2 + g(X,Y )E2}

J((▽XJ)Y ) =J((▽̆XJ)(Y ))− η(JY )JX − η(Y )X + g(X,JY )JE+
g(X,Y )E − k1{η1(JY )JX − η1(Y )X − g(X, JY )JE1

−g(X,Y )E1}+ k2{g(X, JY )JE2 + g(X,Y )E2}

(▽JXJ)Y =(▽̆JXJ)(Y )− η(JY )JX − η(Y )X + g(JX, JY )JE+
g(JX, Y )E − k1{η1(JY )JX − η1(Y )X − g(JX, JY )E1

+g(X,Y )JE1}+ k2{g(JX, JY )E2 − g(JX, Y )JE2}

(▽JY J)X =(▽̆JY J)(X)− η(JX)JY − η(X)Y + g(JX, JY )JE+
g(JY,X)E − k1{η1(JX)JY − η1(X)Y − g(JY, JX)E1

+g(X,Y )JE1}+ k2{g(JY, JX)E2 − g(JY,X)JE2}

Now by substituting the above terms into (3.7), we get

N(X,Y ) = J((▽̆Y J)X)− J((▽̆XJ)Y ) + (▽̆JXJ)Y − (▽̆JY J)X = N̆(X,Y ),

where N̆(X,Y ) is the Nijenhuis tensor with respect to S-generalized connection. 2

Therefore we have the following corollary.

Corollary 3.4. If M̃ is a Kähler Manifold that admits the S-generalized connection,
then M̃ is also a Kähler manifold with respect to the S-generalized connection.

For abbreviation, we set

ϱ(X,Y ) = η(JY )X − η(Y )JX − g(X, JY )E + g(X,Y )JE

+ k1{η1(JY )X − η1(Y )JX − g(X, JY )E1 + g(X,Y )JE1}

−k2{g(X, JY )E2 − g(X,Y )JE2}.
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So from definition of Kähler manifold and (3.5), we have the following obvious
result.

Corollary 3.5. Let M̃ be a Kähler manifold that admits the S-generalized con-
nection. Then (▽̆JXJ)(JY ) = (▽̆XJ)(Y ). Moreover, (▽̆XJ)Y = 0 if and only if
ϱ(X,Y ) = 0.

A vector field W on a almost Hermitian manifold M with almost complex
structure J , is called contravariant almost analytic vector field, if the Lie deriva-
tive of J with respect to W vanishes identically for all vector field X on M ,
i.e. (LWJ)(X) = 0, this means that [W,JX] = J [W,X]. Therefore on a
Kähler manifold, a vector field W is contravariant almost analytic if and only if
(▽JXW ) = J(▽XW ) that is equivalent to J(▽JXW ) = −▽XW . Now we have
the following theorem as a direct result.

Theorem 3.6. Let M̃ be a Kähler manifold with respect to both Levi-Civita con-
nection ▽ and S-generalized connection ▽̆. If a vector field W is contravariant
almost analytic on M̃ with respect to Levi-Civita connection ▽, then W is also a
contravariant almost analytic on M̃ with respect to ▽̆.

Proof. By using (1.1) and linearity of J we have,

(3.8) ▽̆JXW − J(▽̆XW ) = ▽JXW − J(▽XW ) + ϱ(W,X)

Since M̃ is a Kähler manifold with respect to connections ▽ and ▽̆, definition
of contravariant almost analytic vector field implies that

▽JXW − J(▽XW ) = 0.

So, the Corollary 3.5 gives us the result.
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