• 제목/요약/키워드: Malicious

검색결과 1,427건 처리시간 0.022초

시각화 기법을 이용한 악성코드 분석 및 분류 연구 (A Study on Malicious Codes Grouping and Analysis Using Visualization)

  • 송인수;이동휘;김귀남
    • 융합보안논문지
    • /
    • 제10권3호
    • /
    • pp.51-60
    • /
    • 2010
  • 인터넷 기술의 급격한 발전으로 인한 편리함과 더불어 다양한 악성코드들이 제작되고 있다. 악성코드의 발생건수는 날이 갈수록 부지기수로 늘어나고 있으며, 변종 혹은 새로운 악성코드에 대한 유포는 매우 심각하여 악성코드에 대한 분석은 절실히 필요한 시점이다. 악성코드에 대한 판단기준을 설정할 필요가 있으며, 알고리즘을 이용한 악성코드 분류의 단점은 이미 발견된 악성코드에 대한 분류는 효율적이나 새롭게 생긴 악성코드나 변종된 악성코드에 대해서는 새로운 탐지가 어려운 단점이 있다. 이에 본 연구의 목적은 시각화 기법의 장점을 이용하여 기존의 다변량의 악성코드에 대한 측정 및 분석뿐만 아니라, 변종 혹은 새로운 악성코드에 대해서도 새로운 패턴 혹은 형태를 도출하여 새로운 악성코드와 변종들에 대해서 대처하는데 있다. 따라서 본 논문에서는 업체에서 제공되는 악성코드 속성을 시각화하여 분석하는 기법을 제안하고자 한다.

A study on Countermeasures by Detecting Trojan-type Downloader/Dropper Malicious Code

  • Kim, Hee Wan
    • International Journal of Advanced Culture Technology
    • /
    • 제9권4호
    • /
    • pp.288-294
    • /
    • 2021
  • There are various ways to be infected with malicious code due to the increase in Internet use, such as the web, affiliate programs, P2P, illegal software, DNS alteration of routers, word processor vulnerabilities, spam mail, and storage media. In addition, malicious codes are produced more easily than before through automatic generation programs due to evasion technology according to the advancement of production technology. In the past, the propagation speed of malicious code was slow, the infection route was limited, and the propagation technology had a simple structure, so there was enough time to study countermeasures. However, current malicious codes have become very intelligent by absorbing technologies such as concealment technology and self-transformation, causing problems such as distributed denial of service attacks (DDoS), spam sending and personal information theft. The existing malware detection technique, which is a signature detection technique, cannot respond when it encounters a malicious code whose attack pattern has been changed or a new type of malicious code. In addition, it is difficult to perform static analysis on malicious code to which code obfuscation, encryption, and packing techniques are applied to make malicious code analysis difficult. Therefore, in this paper, a method to detect malicious code through dynamic analysis and static analysis using Trojan-type Downloader/Dropper malicious code was showed, and suggested to malicious code detection and countermeasures.

페이스북에서 사이버 특성과 악성댓글의 관계 : 익명성과 전파성의 역할 (The Relationship between Cyber Characteristics and Malicious Comments on Facebook : The Role of Anonymity and Dissemination)

  • 김한민
    • Journal of Information Technology Applications and Management
    • /
    • 제25권1호
    • /
    • pp.87-104
    • /
    • 2018
  • The internet is spreading widely and malicious comments which is a negative aspect is increasing. Previous studies have considered anonymity as a cyber characteristic of malicious comments. However, there are a theoretical confusion due to inconsistent results. In addition, the dissemination, one of cyber characteristics, have been mentioned the theoretical relationship on malicious comments, but measurement and empirical study about dissemination were still limited. Therefore, this study developed a measurement of dissemination and investigated the relationship between cyber characteristics (anonymity, dissemination) and malicious comments on Facebook. As a result of research, this study identified that anonymity is not significant on malicious comments and discovered that the dissemination of cyber space has a direct influence on malicious comments. This study suggests that information systems can contribute to malicious comments researches by proposing cyber characteristics.

CNN 기반 MS Office 악성 문서 탐지 (MS Office Malicious Document Detection Based on CNN)

  • 박현수;강아름
    • 정보보호학회논문지
    • /
    • 제32권2호
    • /
    • pp.439-446
    • /
    • 2022
  • 웹사이트나 메일의 첨부 파일을 이용해 문서형 악성코드의 유포가 활발하게 이루어지고 있다. 문서형 악성코드는 실행 파일이 직접 실행되는 것이 아니므로 보안 프로그램의 우회가 비교적 쉽다. 따라서 문서형 악성코드는 사전에 탐지하고 예방해야 한다. 이를 탐지하기 위해 문서의 구조를 파악하고 악성으로 의심되는 키워드를 선정하였다. 문서 내의 스트림 데이터를 아스키코드값으로 변환하여 데이터셋을 만들었다. CNN 알고리즘을 이용하여 문서의 스트림 데이터 내에 존재하는 악성 키워드의 위치를 확인하고 인접 정보를 활용하여 이를 악성으로 분류했다. 파일 내의 스트림 단위로 악성코드를 탐지한 결과 0.97의 정확도를 보였고, 파일 단위로 악성코드를 탐지한 결과 0.92의 정확도를 보였다.

연관규칙 마이닝과 나이브베이즈 분류를 이용한 악성코드 탐지 (Detection of Malicious Code using Association Rule Mining and Naive Bayes classification)

  • 주영지;김병식;신주현
    • 한국멀티미디어학회논문지
    • /
    • 제20권11호
    • /
    • pp.1759-1767
    • /
    • 2017
  • Although Open API has been invigorated by advancements in the software industry, diverse types of malicious code have also increased. Thus, many studies have been carried out to discriminate the behaviors of malicious code based on API data, and to determine whether malicious code is included in a specific executable file. Existing methods detect malicious code by analyzing signature data, which requires a long time to detect mutated malicious code and has a high false detection rate. Accordingly, in this paper, we propose a method that analyzes and detects malicious code using association rule mining and an Naive Bayes classification. The proposed method reduces the false detection rate by mining the rules of malicious and normal code APIs in the PE file and grouping patterns using the DHP(Direct Hashing and Pruning) algorithm, and classifies malicious and normal files using the Naive Bayes.

Automated Link Tracing for Classification of Malicious Websites in Malware Distribution Networks

  • Choi, Sang-Yong;Lim, Chang Gyoon;Kim, Yong-Min
    • Journal of Information Processing Systems
    • /
    • 제15권1호
    • /
    • pp.100-115
    • /
    • 2019
  • Malicious code distribution on the Internet is one of the most critical Internet-based threats and distribution technology has evolved to bypass detection systems. As a new defense against the detection bypass technology of malicious attackers, this study proposes the automated tracing of malicious websites in a malware distribution network (MDN). The proposed technology extracts automated links and classifies websites into malicious and normal websites based on link structure. Even if attackers use a new distribution technology, website classification is possible as long as the connections are established through automated links. The use of a real web-browser and proxy server enables an adequate response to attackers' perception of analysis environments and evasion technology and prevents analysis environments from being infected by malicious code. The validity and accuracy of the proposed method for classification are verified using 20,000 links, 10,000 each from normal and malicious websites.

모바일 앱 악성코드 분석을 위한 학습모델 제안 (Proposal of a Learning Model for Mobile App Malicious Code Analysis)

  • 배세진;최영렬;이정수;백남균
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.455-457
    • /
    • 2021
  • 앱(App) 또는 어플리케이션이라고 부르는 응용 프로그램은 스마트폰이나 스마트TV와 같은 스마트 기기에서 사용되고 있다. 당연하게도 앱에도 악성코드가 있는데, 악성코드의 유무에 따라 정상앱과 악성앱으로 나눌 수 있다. 악성코드는 많고 종류가 다양하기 때문에 사람이 직접 탐지하기 어렵다는 단점이 있어 AI를 활용하여 악성앱을 탐지하는 방안을 제안한다. 기존 방법에서는 악성앱에서 Feature를 추출하여 악성앱을 탐지하는 방법이 대부분이었다. 하지만 종류와 수가 기하급수적으로 늘어 일일이 탐지할 수도 없는 상황이다. 따라서 기존 대부분의 악성앱에서 Feature을 추출하여 악성앱을 탐지하는 방안 외에 두 가지를 더 제안하려 한다. 첫 번째 방안은 기존 악성앱 학습을 하여 악성앱을 탐지하는 방법과 는 반대로 정상앱을 공부하여 Feature를 추출하여 학습한 후 정상에서 거리가 먼, 다시 말해 비정상(악성앱)을 찾는 것이다. 두 번째 제안하는 방안은 기존 방안과 첫 번째로 제안한 방안을 결합한 '앙상블 기법'이다. 이 두 기법은 향후 앱 환경에서 활용될 수 있도록 연구를 진행할 필요가 있다.

  • PDF

퍼지해시를 이용한 유사 악성코드 분류모델에 관한 연구 (Research on the Classification Model of Similarity Malware using Fuzzy Hash)

  • 박창욱;정현지;서광석;이상진
    • 정보보호학회논문지
    • /
    • 제22권6호
    • /
    • pp.1325-1336
    • /
    • 2012
  • 과거 일 평균 10종 내외로 발견되었던 악성코드가 최근 10년 동안 급격히 증가하여 오늘날에는 55,000종 이상의 악성코드가 발견되고 있다. 하지만 발견되는 다수의 악성코드는 새로운 형태의 신종 악성코드가 아니라 과거 악성코드에서 일부 기능이 추가되거나 백신탐지를 피하기 위해 인위적으로 조작된 변종 악성코드가 다수이다. 따라서 신종과 변종이 포함된 다수의 악성코드를 효과적으로 대응하기 위해서는 과거의 악성코드와 유사도를 비교하여 신종과 변종을 분류하는 과정이 필요하게 되었다. 기존의 악성코드를 대상으로 한 유사도 산출 기법은 악성코드가 사용하는 IP, URL, API, 문자열 등의 외형적 특징을 비교하거나 악성코드의 코드단계를 서로 비교하는 방식이 사용되었다. 하지만 악성코드의 유입량이 증가하고 비교대상이 많아지면서 유사도를 확인하기 위해 많은 계산이 필요하게 되자 계산량을 줄이기 위해 최근에는 퍼지해시가 사용되고 있다. 하지만 퍼지해시에 제한사항들이 제시되면서 기존의 퍼지해시를 이용한 유사도 비교방식의 문제점이 제시되고 있다. 이에 본 논문에서는 퍼지해시를 이용하여 유사도 성능을 높일 수 있는 새로운 악성코드간 유사도 비교기법을 제안하고 이를 활용한 악성코드 분류기법을 제시하고자 한다.

Improving Malicious Web Code Classification with Sequence by Machine Learning

  • Paik, Incheon
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제3권5호
    • /
    • pp.319-324
    • /
    • 2014
  • Web applications make life more convenient. Many web applications have several kinds of user input (e.g. personal information, a user's comment of commercial goods, etc.) for the activities. On the other hand, there are a range of vulnerabilities in the input functions of Web applications. Malicious actions can be attempted using the free accessibility of many web applications. Attacks by the exploitation of these input vulnerabilities can be achieved by injecting malicious web code; it enables one to perform a variety of illegal actions, such as SQL Injection Attacks (SQLIAs) and Cross Site Scripting (XSS). These actions come down to theft, replacing personal information, or phishing. The existing solutions use a parser for the code, are limited to fixed and very small patterns, and are difficult to adapt to variations. A machine learning method can give leverage to cover a far broader range of malicious web code and is easy to adapt to variations and changes. Therefore, this paper suggests the adaptable classification of malicious web code by machine learning approaches for detecting the exploitation user inputs. The approach usually identifies the "looks-like malicious" code for real malicious code. More detailed classification using sequence information is also introduced. The precision for the "looks-like malicious code" is 99% and for the precise classification with sequence is 90%.

클라우드 환경에서의 악성트래픽 동적 분석 시스템 설계 (Design of Malicious Traffic Dynamic Analysis System in Cloud Environment)

  • 이은지;곽진
    • 정보보호학회논문지
    • /
    • 제27권3호
    • /
    • pp.579-589
    • /
    • 2017
  • 클라우드 환경은 하이퍼바이저 기반으로 다수의 가상머신들이 상호 연결된 형태로 악성코드의 전파가 용이하기 때문에 다른 환경에 비해 악성코드에 감염될 경우 그 피해규모가 상대적으로 크다. 본 논문에서는 이러한 문제점을 해결하기 위해 안전한 클라우드 환경을 위한 악성트래픽 동적 분석 시스템을 제안한다. 제안하는 시스템은 클라우드 환경에서 발생하는 악성트래픽을 판별하여 악성행위를 격리된 가상네트워크 환경에서 지속적으로 모니터링 및 분석한다. 또한, 분석된 결과를 추후 발생하는 악성트래픽의 판별과 분석에 반영한다. 본 논문에서 제안하는 시스템은 클라우드 환경에서 발생하는 신 변종 악성트래픽 탐지 및 대응을 목적으로 클라우드 환경에서의 악성트래픽 분석환경을 구축함으로써 안전하고 효율적인 악성트래픽 동적 분석을 제공한다.