인터넷 기술의 급격한 발전으로 인한 편리함과 더불어 다양한 악성코드들이 제작되고 있다. 악성코드의 발생건수는 날이 갈수록 부지기수로 늘어나고 있으며, 변종 혹은 새로운 악성코드에 대한 유포는 매우 심각하여 악성코드에 대한 분석은 절실히 필요한 시점이다. 악성코드에 대한 판단기준을 설정할 필요가 있으며, 알고리즘을 이용한 악성코드 분류의 단점은 이미 발견된 악성코드에 대한 분류는 효율적이나 새롭게 생긴 악성코드나 변종된 악성코드에 대해서는 새로운 탐지가 어려운 단점이 있다. 이에 본 연구의 목적은 시각화 기법의 장점을 이용하여 기존의 다변량의 악성코드에 대한 측정 및 분석뿐만 아니라, 변종 혹은 새로운 악성코드에 대해서도 새로운 패턴 혹은 형태를 도출하여 새로운 악성코드와 변종들에 대해서 대처하는데 있다. 따라서 본 논문에서는 업체에서 제공되는 악성코드 속성을 시각화하여 분석하는 기법을 제안하고자 한다.
International Journal of Advanced Culture Technology
/
제9권4호
/
pp.288-294
/
2021
There are various ways to be infected with malicious code due to the increase in Internet use, such as the web, affiliate programs, P2P, illegal software, DNS alteration of routers, word processor vulnerabilities, spam mail, and storage media. In addition, malicious codes are produced more easily than before through automatic generation programs due to evasion technology according to the advancement of production technology. In the past, the propagation speed of malicious code was slow, the infection route was limited, and the propagation technology had a simple structure, so there was enough time to study countermeasures. However, current malicious codes have become very intelligent by absorbing technologies such as concealment technology and self-transformation, causing problems such as distributed denial of service attacks (DDoS), spam sending and personal information theft. The existing malware detection technique, which is a signature detection technique, cannot respond when it encounters a malicious code whose attack pattern has been changed or a new type of malicious code. In addition, it is difficult to perform static analysis on malicious code to which code obfuscation, encryption, and packing techniques are applied to make malicious code analysis difficult. Therefore, in this paper, a method to detect malicious code through dynamic analysis and static analysis using Trojan-type Downloader/Dropper malicious code was showed, and suggested to malicious code detection and countermeasures.
Journal of Information Technology Applications and Management
/
제25권1호
/
pp.87-104
/
2018
The internet is spreading widely and malicious comments which is a negative aspect is increasing. Previous studies have considered anonymity as a cyber characteristic of malicious comments. However, there are a theoretical confusion due to inconsistent results. In addition, the dissemination, one of cyber characteristics, have been mentioned the theoretical relationship on malicious comments, but measurement and empirical study about dissemination were still limited. Therefore, this study developed a measurement of dissemination and investigated the relationship between cyber characteristics (anonymity, dissemination) and malicious comments on Facebook. As a result of research, this study identified that anonymity is not significant on malicious comments and discovered that the dissemination of cyber space has a direct influence on malicious comments. This study suggests that information systems can contribute to malicious comments researches by proposing cyber characteristics.
웹사이트나 메일의 첨부 파일을 이용해 문서형 악성코드의 유포가 활발하게 이루어지고 있다. 문서형 악성코드는 실행 파일이 직접 실행되는 것이 아니므로 보안 프로그램의 우회가 비교적 쉽다. 따라서 문서형 악성코드는 사전에 탐지하고 예방해야 한다. 이를 탐지하기 위해 문서의 구조를 파악하고 악성으로 의심되는 키워드를 선정하였다. 문서 내의 스트림 데이터를 아스키코드값으로 변환하여 데이터셋을 만들었다. CNN 알고리즘을 이용하여 문서의 스트림 데이터 내에 존재하는 악성 키워드의 위치를 확인하고 인접 정보를 활용하여 이를 악성으로 분류했다. 파일 내의 스트림 단위로 악성코드를 탐지한 결과 0.97의 정확도를 보였고, 파일 단위로 악성코드를 탐지한 결과 0.92의 정확도를 보였다.
Although Open API has been invigorated by advancements in the software industry, diverse types of malicious code have also increased. Thus, many studies have been carried out to discriminate the behaviors of malicious code based on API data, and to determine whether malicious code is included in a specific executable file. Existing methods detect malicious code by analyzing signature data, which requires a long time to detect mutated malicious code and has a high false detection rate. Accordingly, in this paper, we propose a method that analyzes and detects malicious code using association rule mining and an Naive Bayes classification. The proposed method reduces the false detection rate by mining the rules of malicious and normal code APIs in the PE file and grouping patterns using the DHP(Direct Hashing and Pruning) algorithm, and classifies malicious and normal files using the Naive Bayes.
Malicious code distribution on the Internet is one of the most critical Internet-based threats and distribution technology has evolved to bypass detection systems. As a new defense against the detection bypass technology of malicious attackers, this study proposes the automated tracing of malicious websites in a malware distribution network (MDN). The proposed technology extracts automated links and classifies websites into malicious and normal websites based on link structure. Even if attackers use a new distribution technology, website classification is possible as long as the connections are established through automated links. The use of a real web-browser and proxy server enables an adequate response to attackers' perception of analysis environments and evasion technology and prevents analysis environments from being infected by malicious code. The validity and accuracy of the proposed method for classification are verified using 20,000 links, 10,000 each from normal and malicious websites.
앱(App) 또는 어플리케이션이라고 부르는 응용 프로그램은 스마트폰이나 스마트TV와 같은 스마트 기기에서 사용되고 있다. 당연하게도 앱에도 악성코드가 있는데, 악성코드의 유무에 따라 정상앱과 악성앱으로 나눌 수 있다. 악성코드는 많고 종류가 다양하기 때문에 사람이 직접 탐지하기 어렵다는 단점이 있어 AI를 활용하여 악성앱을 탐지하는 방안을 제안한다. 기존 방법에서는 악성앱에서 Feature를 추출하여 악성앱을 탐지하는 방법이 대부분이었다. 하지만 종류와 수가 기하급수적으로 늘어 일일이 탐지할 수도 없는 상황이다. 따라서 기존 대부분의 악성앱에서 Feature을 추출하여 악성앱을 탐지하는 방안 외에 두 가지를 더 제안하려 한다. 첫 번째 방안은 기존 악성앱 학습을 하여 악성앱을 탐지하는 방법과 는 반대로 정상앱을 공부하여 Feature를 추출하여 학습한 후 정상에서 거리가 먼, 다시 말해 비정상(악성앱)을 찾는 것이다. 두 번째 제안하는 방안은 기존 방안과 첫 번째로 제안한 방안을 결합한 '앙상블 기법'이다. 이 두 기법은 향후 앱 환경에서 활용될 수 있도록 연구를 진행할 필요가 있다.
과거 일 평균 10종 내외로 발견되었던 악성코드가 최근 10년 동안 급격히 증가하여 오늘날에는 55,000종 이상의 악성코드가 발견되고 있다. 하지만 발견되는 다수의 악성코드는 새로운 형태의 신종 악성코드가 아니라 과거 악성코드에서 일부 기능이 추가되거나 백신탐지를 피하기 위해 인위적으로 조작된 변종 악성코드가 다수이다. 따라서 신종과 변종이 포함된 다수의 악성코드를 효과적으로 대응하기 위해서는 과거의 악성코드와 유사도를 비교하여 신종과 변종을 분류하는 과정이 필요하게 되었다. 기존의 악성코드를 대상으로 한 유사도 산출 기법은 악성코드가 사용하는 IP, URL, API, 문자열 등의 외형적 특징을 비교하거나 악성코드의 코드단계를 서로 비교하는 방식이 사용되었다. 하지만 악성코드의 유입량이 증가하고 비교대상이 많아지면서 유사도를 확인하기 위해 많은 계산이 필요하게 되자 계산량을 줄이기 위해 최근에는 퍼지해시가 사용되고 있다. 하지만 퍼지해시에 제한사항들이 제시되면서 기존의 퍼지해시를 이용한 유사도 비교방식의 문제점이 제시되고 있다. 이에 본 논문에서는 퍼지해시를 이용하여 유사도 성능을 높일 수 있는 새로운 악성코드간 유사도 비교기법을 제안하고 이를 활용한 악성코드 분류기법을 제시하고자 한다.
IEIE Transactions on Smart Processing and Computing
/
제3권5호
/
pp.319-324
/
2014
Web applications make life more convenient. Many web applications have several kinds of user input (e.g. personal information, a user's comment of commercial goods, etc.) for the activities. On the other hand, there are a range of vulnerabilities in the input functions of Web applications. Malicious actions can be attempted using the free accessibility of many web applications. Attacks by the exploitation of these input vulnerabilities can be achieved by injecting malicious web code; it enables one to perform a variety of illegal actions, such as SQL Injection Attacks (SQLIAs) and Cross Site Scripting (XSS). These actions come down to theft, replacing personal information, or phishing. The existing solutions use a parser for the code, are limited to fixed and very small patterns, and are difficult to adapt to variations. A machine learning method can give leverage to cover a far broader range of malicious web code and is easy to adapt to variations and changes. Therefore, this paper suggests the adaptable classification of malicious web code by machine learning approaches for detecting the exploitation user inputs. The approach usually identifies the "looks-like malicious" code for real malicious code. More detailed classification using sequence information is also introduced. The precision for the "looks-like malicious code" is 99% and for the precise classification with sequence is 90%.
클라우드 환경은 하이퍼바이저 기반으로 다수의 가상머신들이 상호 연결된 형태로 악성코드의 전파가 용이하기 때문에 다른 환경에 비해 악성코드에 감염될 경우 그 피해규모가 상대적으로 크다. 본 논문에서는 이러한 문제점을 해결하기 위해 안전한 클라우드 환경을 위한 악성트래픽 동적 분석 시스템을 제안한다. 제안하는 시스템은 클라우드 환경에서 발생하는 악성트래픽을 판별하여 악성행위를 격리된 가상네트워크 환경에서 지속적으로 모니터링 및 분석한다. 또한, 분석된 결과를 추후 발생하는 악성트래픽의 판별과 분석에 반영한다. 본 논문에서 제안하는 시스템은 클라우드 환경에서 발생하는 신 변종 악성트래픽 탐지 및 대응을 목적으로 클라우드 환경에서의 악성트래픽 분석환경을 구축함으로써 안전하고 효율적인 악성트래픽 동적 분석을 제공한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.