• Title/Summary/Keyword: Magnetic suspension

Search Result 231, Processing Time 0.029 seconds

Magnetic Suspension System with Low Power Consumption (에너지 절약형 자기부상계)

  • 김종선;노승국;최상규
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.148-153
    • /
    • 1995
  • 저전력소비형 자기부상계로써 영구자석/전자석 조합형 자기부상계에 관한 연구를 수행하였다. 설계에 필요한 여러 고려사항중에서 자기회로 해석, 영구자석의 특성등을 고려한 형상 제원의 설계, 특히 영구자석의 특성 등을 고려한 형상 제원의 설계, 특히 영구자석의 특성과 제원이 동특성에 미치는 영향을 해석하였으며 영구자석/전자석 조합형 자기부상계의 설계에 관한 기초연구를 수행하였다. 1자유도 모형을 이용한 수치예와 실험을 통하여 제시된 방법의 장점인 저전력소비형 자기부상이 가능함을 보였으며 실제 응용예로써 플라이휠용 자기베어링에의 적용 가능성을 수치예를 통해 보였다.

  • PDF

Nonlinear Adaptive Control of EMS Systems with Mass Uncertainty (무게 변화를 고려한 자기부사열차의 비선형 적응제어기법)

  • Jo, Nam-Hoon;Joo, Sung-Jun;Seo, Jin-Heon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.10
    • /
    • pp.563-571
    • /
    • 2000
  • In this paper, a nonlinear adaptive control method for an EMS(Electro-Magnetic Suspension) system with mass uncertainty is proposed. Using the coordinate transformation and feedback linearizing control, EMS system has been transformed into the form of parametric strict-feedback system with unknown virtual control coefficients. With this transformed system, tuning functions approach, which is an advanced from of adaptive backstepping, has been applied in order to stabilize the system against mass uncertainty. Computer simulation is also carried out in order to compare the performance of the proposed controller with that of feedback linerizing controller.

  • PDF

Dynamic Analysis of the Contact-free Surface Actuator (비접촉식 평면구동기의 동특성해석)

  • 이상헌;백윤수
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.9
    • /
    • pp.663-670
    • /
    • 2003
  • As the micro-technologies in the high precision manufacturing processes are developed, the demand for micro actuating device is increasing. But, it is difficult to achieve high resolution and wide operating range simultaneously with the conventional actuating systems which are contacting and type of dual servo system. So, the contact-free surface actuators whose movers are suspended or levitated were proposed. These systems can be applied to high precision stages and alignment apparatuses. The suspended mover can be assumed to be rigid body, but the mover is a structure in this study, therefore the vibration caused during the operating process has a serious adverse effect on the performance and it is very important to identify the vibrational characteristics. In this paper, a contact-free surface actuator is modeled in finite element method and updated by using the experimental modal data. Finally, the static and dynamic characteristics of the finite element model are predicted and then discussed.

A Driving Algorithm for a Switched Reluctance type Contact-Free Linear Stage (Switched Reluctance 형 비접촉 선형 스테이지를 위한 구동 알고리즘)

  • Lee Sang-Heon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.5 s.182
    • /
    • pp.85-92
    • /
    • 2006
  • Recently in the field of precision positioning device, the contact-free stages are gaining focuses with their outstanding performances by eliminating mechanical frictions. This paper presents the driving algorithm for contact-free linear stage based on switched reluctance principle. The proposed driving algorithm has a similar structure of that of switched reluctance motor but this study has its own originality in terms of reducing the normal farces and force ripple at the same time. The simulation and experiment are executed to verify the proposed algorithm.

Overview and Implication of Technical Trend of New High-speed Train in the World (세계 고속열차 기술개발 동향과 시사점)

  • Park, Choon-Soo;Kim, Ki-Whan;Kim, Sang-Soo
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.862-867
    • /
    • 2008
  • High-speed railway is important transportation in the world because it is very comfortable, environmental benefits, energy savings, etc. The increase of demand for high-speed railway influence to develop of new hish-speed trains. Many countries introduced new high-speed train in the market. It meets to the market's needs. They adopt new technology and systems like that active suspension, synchronous permanent magnetic motor, distributed drive system, aero acoustics, etc. In Korea, the project for R&D of new high-speed train is launched last year. We need analysis of technical trend of new high-speed trains in the world. This paper presents a overview of technical trend of new high speed trains and what is key issues in development of high-speed train. It is very useful to develop a next generation high-speed train in Korea.

  • PDF

A Study on Active Vibration Isolation Using Electro-Magnetic Actuator (전자기력을 이용한 능동제진에 관한 연구)

  • 손태규;김규용;박영필
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1169-1181
    • /
    • 1994
  • Vibration isolation of mechanical systems, in general, is achieved through passive or active vibration isolators. Passive vibration isolator has an inherenrt performance limitation. Whereas, active vibration isolator provides significantly superior vibration-isolation performance at the cost of energy sources and sensors. Recently, in many cases, such as suspension system, precision machinery ... etc, active isolation system outweighs its limitation. Therefore, many studies, researches, and applications are carried out in this field. In this study, vibration-isolation characteristics of an active vibration control system using electromagnetic force actuator are investigated. Several control algorithms including optimal, feedforward are used for active vibration isolation. From the experimental results of each algorithm, effective control algorithms for this active vibration-isolation system are proposed.

Determination the appearance coefficients of Linear Homopolar Synchronous Motor for Integrated Suspension/Propulsion System (자기부상 및 추진일체형 LHSM의 자기형상계수 산정)

  • Jang, S.M.;Jeong, S.S.;Lee, S.L.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.281-283
    • /
    • 1998
  • The 4-poles LHSM with transverse bar track was designed on the base of the performance equations and the equivalent circuit model. However, the magnetic shape factors, such as Carter's and Green's coefficients, $B_{min}/B_{max}$ and leakage factors, were important in the design and analysis of LHSM. Consequently, these coefficients were computed from the analytical expressions and examined from FEM analysis in detail.

  • PDF

Identification of the Closed Loop Systems using the Signal Compression Method

  • Toshitaka UMEMOTO;I, Tomoharu-Do;Shoichiro FUJISAWA;Takeo YOSHIDA
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.318-322
    • /
    • 1998
  • An Electro Magnetic Suspension System, which has two floating masses connected with springs and dampers, can not keep its equilibrium when it is solved as an ordinary quartic mathematical model. So, a two dimensional con-troller, designed with quadratic mathematical model assuming the two mass model to be a rigid body, was used. As the result, the system floated stably. Therefore, we measured the transfer performances of this closed loop system contained this controller using the compression signal method proposed by N.Aoshima and identified the parameters of this system. Finally, we compared these parameters with the computing results of quartic mathematical model.

  • PDF

DEVELOPMENT OF NONLINEAR FEEDBACK LINEARIZATION CONTROLLER FOR AN EMS SYSTEM WITH FLEXIBLE RAIL

  • Park, Jee-Hoon;Byun, Ji-Joon;Joo, Sung-Jun;Seo, Jin-H.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1143-1145
    • /
    • 1996
  • In this paper, we consider a nonlinear control problem for an Electro-Magnetic Suspension(EMS) system with flexible rail. In controller design based on feedback linearization, we apply the feedback linearization technique to the part of the system which provides nonlinearities to the plant. The experimental results demonstrate that the feedback linearization controller shows good performance.

  • PDF

Modeling and Control of 2 DOF EMS System (2자유도 자기부상시스템의 모형화 및 제어기 개발)

  • Jo, Nam-H.;Seo, Jin-H.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.959-961
    • /
    • 1996
  • In this paper, we study the modeling and control of Electro-Magnetic Suspension System with 2 Degree Of Freedom. While the previous researchers considered the control of single rail EMS Systems, we consider the control of two rail EMS Systems. We first derive a simple model to represent the dynamics of EMS System with 2 D.O.F., using the Lagrange's method. The nonlinear equations of motion that we derive are shown to be linearizable by coordinate change and nonlinear static state feedback. The nonlinear static state feedback controller is constructed explicitly.

  • PDF