• Title/Summary/Keyword: MR scan

Search Result 125, Processing Time 0.029 seconds

Skeletal Sarcomas Examined with MR in Tubular and CT in Flat Bones (골격계 육종에서 관상골MR과 편평골CT의 유용성)

  • Moon, Tae-Yong;Lee, Young-Joon;Jung, Kyung-Hwa;Hur, Jin-Do;Sol, Mi-Young;Kwon, Woon-Jung
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.9 no.2
    • /
    • pp.162-168
    • /
    • 2003
  • Purpose: Primary malignant bone tumors are classified with mesenchymal sarcomas (MS) such as osteosarcoma and chondrosarcoma and small round cell sarcomas (SRS) such as Ewing's sarcoma and lymphoma. Radiological examinations for skeletal sarcoma were using MR scan in tubular bone sarcomas and CT scan in flat bone sarcomas recently. Both MR and CT scans show some findings of bone destruction and soft tissue mass but MR scans don't reveal a finding with mineralization relatively. So we investigated bone destructive pattern of skeletal sarcomas on both MR and CT scans for differentiation of MS and SRS. Materials and Methods: There are 28 MS and 26 SRS examined with MR or CT scans. The findings according to bone destructive pattern were divided to eccentric and concentric in 26 cases of tubular bone sarcomas with MR scan and 28 cases of flat bone sarcomas with CT scan. Results: MR images revealed eccentric destruction in 12 cases of 16 MS and concentric in all cases of 10 SRS (p>.01). CT images showed eccentric destruction in 10 cases of 12 MS and concentric bone destruction in 13 cases of 16 SRS (p>.01) Conclusion: The findings divided to eccentric and concentric bone destructive patterns were useful for differential diagnosis of MS from SRS on both MR and CT scans.

  • PDF

Generalized Lymphangiomatosis: A Case Report (전신성 림프관종증: 증례 보고)

  • Cha, Jang-Gyu;Park, Jai-Soung;Paik, Sang-Hyun;Kim, Hee-Kyung
    • Investigative Magnetic Resonance Imaging
    • /
    • v.13 no.2
    • /
    • pp.190-194
    • /
    • 2009
  • Generalized lymphangiomatosis is a rare congenital malformation of the lymphatics. CT and MR scan have been used to evaluate lymphangiomas, which appear as large multicystic fluid-filled masses. CT and MR Imaging findings are often helpful in distinguishing lymphangiomas from various vascular disorders. We report the findings of CT, MRI and bone scan in a patient with generalized cystic lymphangiomatosis. Whole body 3.0-T MR scan using STIR sequence with a larger FOV could detect the additional lesions that were not seen at other imaging modalities. We believe that whole body 3.0 T MR imaging is a good modality to evaluate the extent of the disease and following up the patients with the generalized cystic lymphangiomatosis.

  • PDF

Evaluation of usefulness of multi directional angles oblique scan method in optic nerve MRI (시각신경 MR 검사 시 다중 각도 스캔 기법의 유용성 평가)

  • Cho, Moo-Seong;Cho, Jae-Hwan;Bae, Jae-Yeong;Kim, Jeong-Soo;Kim, Kyeong-Keun
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.4
    • /
    • pp.161-169
    • /
    • 2011
  • This research experimented on the change of the multiple colleague scan angle facing one scan object facet to many directions of the form of 3D about the visual angle nervous system forming the cubic distribution with the gradient magnetic field of the mri system and considered the existing basic angle oblique direction test coverage and comparison. MR system can freely select various pulse sequence and image slice. To oblique imaging for optic nerve viewing, we have studied the variation of scan angle between typical oblique scan method (sagittal-coronal plane) and multi directional angles oblique scan method (sagittal-coronal-axial plane) using gradient of MR system. In this study, the subjects of the experiment were normal adults in our country. As a result, we confirmed that multi directional angles oblique scan method can display anatomical information of more wider area than typical oblique scan method. In addition, to clearly display optic nerve, we also confirmed that image slice thickness and pulse sequence have effect on it.

Detection of Spinal Metastases: Comparison of Bone Scan and MR Imaging (전이성 척추 악성 종양의 진단 : 골스캔과 자기공명영상의 비교)

  • Kim, Ki-Jun;Sohn, Hyung-Sun;Park, Jeong-Mi;Chung, Soo-Kyo;Lee, Jae-Moon;Kim, Choon-Yul;Bahk, Yong-Whee;Shinn, Kyung-Sub
    • The Korean Journal of Nuclear Medicine
    • /
    • v.28 no.3
    • /
    • pp.384-390
    • /
    • 1994
  • Authors retrospectively compared the 99mTc MDP bone scans and corresponding MR imagings in 20 patients with histologically proven malignancy, Mean interval of the two studies was 16.6 days, Cancer diagnosis Included 8 lung, 2 each of colon, breast, stomach, 1 each of prostate, thyroid, malignant lymphoma and 3 adenocarcinoma of unknown primary site. Of the 105 regions compared, :t6 regions were positive for metastases in bone scans or MR imagings. 30 regions(65.2%) were positive by bone scan and 44 regions(95.7%) by MR imaging. 87 regions(82.9%) were concordantly positive or negative by bone scan and MR imaging, but 18 regions(17.1%) were discordant. In the discordant regions, 16 regions positive in MR imaging were negative in bone scan. The greatest number of discordant findings occured in the cervical region and in the patient with stomach cancer. Our results suggest that the sensitivity of MR Imaging is greater than that of bone scan in detecting spinal metastases. And bone scan is useful screening test of metastasis for evaluating entire skeleton including spine.

  • PDF

Differences in Target Volume Delineation Using Typical Radiosurgery Planning System (각각의 방사선수술 치료계획시스템에 따른 동일 병변의 체적 차이 비교)

  • Han, Su Chul;Lee, Dong Joon
    • Progress in Medical Physics
    • /
    • v.24 no.4
    • /
    • pp.265-270
    • /
    • 2013
  • Correct target volume delineation is an important part of radiosurgery treatment planning process. We designed head phantom and performed target delineation to evaluate the volume differences due to radiosurgery treatment planning systems and image acquisition system, CT/MR. Delineated mean target volume from CT scan images was $2.23{\pm}0.08cm^3$ on BrainSCAN (NOVALS), $2.13{\pm}0.07cm^3$ on Leksell gamma plan (Gamma Knife) and $2.24{\pm}0.10cm^3$ on Multi plan (Cyber Knife). For MR images, $2.08{\pm}0.06cm^3$ on BrainSCAN, $1.94{\pm}0.05cm^3$ on Leksell gamma plan and $2.15{\pm}0.06cm^3$ on Multi plan. As a result, Differences of delineated mean target volume due to radiotherapy planning system was 3% to 6%. And overall mean target volume from CT scan images was 6.36% larger than those of MR scan images.

Eddy current compensation using a gradient system modeling in MR Spiral scan imaging (MR Spiral scan 영상에서 Gradient system의 모델링을 이용한 Eddy current compensation)

  • Cho, S.H.;Kim, P.K.;Kang, S.W.;Ahn, C.B.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.339-340
    • /
    • 2007
  • Gradient system에 spiral waveform 입력을 가하면 Hardware limitation에 의하여 만들어지는 gradient fields에 Transient time delay가 발생한다. 이를 보상하기 위하여, Gradient system을 R-L-C 회로로 모델링하여 재구성에 필요한 k-space trajectory를 보정하여 개선된 image를 획득하였다.

  • PDF

Determination of Stereotactic Target Position with MR Localizer (자기공명영상을 이용한 두개부내 표적의 3차원적 위치결정)

  • 최태진;김옥배;주양구;서수지;손은익
    • Progress in Medical Physics
    • /
    • v.7 no.2
    • /
    • pp.67-77
    • /
    • 1996
  • Purpose: To get a 3-D coordinates of intracranial target position was investicated in axial, sagittal and coronal magnetic resonance imaging with a preliminary experimented target localizer. Material and methods : In preliminal experiments, the localizer is made of engineering plastic to avoid the distrubance of magnetic field during the MR image scan. The MR localizer displayed the 9 points in three different axial tomogram. The bright signal of localizer was obtjained from 0.1~0.3% of paramagnetic gadolinium/DTPA solution in T1WI or T2WI. In this study, the 3-D position of virtual targets were examined from three different axial MR images and the streotactic position was compared to that of BRW stereotactic system in CT scan with same targets. Results: This study provided the actual target position could be obtained from single scan with MRI localizer which has inverse N-typed 9 bars. This experiment was accomplished with shimming test for detection of image distortion in MR image. However we have not found the image distortion in axial scan. The maximum error of target positions showed 1.0 mm in axial, 1.3 mm for sagittal and 1.7 mm for coronal image, respectivelly. The target localization in MR localizer was investicated with spherical virtual target in skull cadaver. Furthermore, the target position was confirmed with CRW stereotactic system showed a 1.3 mm in discrepancy. Summary : The intracranial target position was determined within 1.7 mm of discrepancy with designed MR localizer. We found the target position from axial image has more small discrepancy than that of sagittal and coronal image.

  • PDF

Improved Reconstruction Algorithm for Spiral Scan Fast MR Imaging with DC offset Correction (DC offset을 보정한 나선 주사 초고속 자기공명영상의 재구성 알고리즘)

  • 안창범;김휴정
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.243-250
    • /
    • 1998
  • Reconstruction aspects of spiral scan imaging for ultra fast magnetic resonance imagine(MRI) have been investigated with polar and rectangular coordinates-based reconstruction. For the reconstruction of the spiral scan imaging, acquired data in spiral trjectory should be converted to polar or rectangular grids, where interpolation techniques are used. Various reconstruction algorithms for spiral scan imaging are tested, and reconstructed image qualities are compared with computed phantom. An improved reconstruction algorithm with dc-offset correction in projection domain is proposed, which provides the best reconstructed image quality from the simulation. Image artifact with existing algorithms is completely removed with the proposed method.

  • PDF

The Optimization of Scan Timing for Contrast-Enhanced Magnetic Resonance Angiography

  • Jongmin J. Lee;Phillip J. Tirman;Yongmin Chang;Hun-Kyu Ryeom;Sang-Kwon Lee;Yong-Sun Kim;Duk-Sik Kang
    • Korean Journal of Radiology
    • /
    • v.1 no.3
    • /
    • pp.142-151
    • /
    • 2000
  • Objective: To determine the optimal scan timing for contrast-enhanced magnetic resonance angiography and to evaluate a new timing method based on the arteriovenous circulation time. Materials and Methods: Eighty-nine contrast-enhanced magnetic resonance angiographic examinations were performed mainly in the extremities. A 1.5T scanner with a 3-D turbo-FLASH sequence was used, and during each study, two consecutive arterial phases and one venous phase were acquired. Scan delay time was calculated from the time-intensity curve by the traditional (n = 48) and/or the new (n = 41) method. This latter was based on arteriovenous circulation time rather than peak arterial enhancement time, as used in the traditional method. The numbers of first-phase images showing a properly enhanced arterial phase were compared between the two methods. Results: Mean scan delay time was 5.4 sec longer with the new method than with the traditional. Properly enhanced first-phase images were found in 65% of cases (31/48) using the traditional timing method, and 95% (39/41) using the new method. When cases in which there was mismatch between the target vessel and the time-intensity curve acquisition site are excluded, erroneous acquisition occurred in seven cases with the traditional method, but in none with the new method. Conclusion: The calculation of scan delay time on the basis of arteriovenous circulation time provides better timing for arterial phase acquisition than the traditional method.

  • PDF

Effect of Gd-based MR contrast agents on CT attenuation of PET/CT for quantitative PET-MRI study

  • Ko, In OK;Park, Ji Ae;Lee, Won Ho;Lim, Sang Moo;Kim, Kyeong Min
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.1 no.2
    • /
    • pp.130-136
    • /
    • 2015
  • We evaluate the influence of MR contrast agent on positron emission tomography (PET) image using phantom, animal and human studies. Phantom consisted of 15 solutions with the mixture of various concentrations of Gd-based MR contrast agent and fixed activity of [$^{18}F$]FDG. Animal study was performed using rabbit and two kinds of MR contrast agents. After injecting contrast agent, CT or MRI scanning was performed at 1, 2, 5, 10, and 20 minutes. PET image was obtained using clinical PET/CT scan, and attenuation correction was performed using the all CT images. The values of HU, PET activity and MRI intensity were obtained from ROIs in each phantom and organ regions. In clinical study, patients (n=20) with breast cancer underwent sequential acquisitions of early [$^{18}F$]FDG PET/CT, MRI and delayed PET/CT. In phantom study, as the concentration increased, the CT attenuation and PET activity also increased. However, there was no relationship between the PET activity and the concentration in the clinical dose range of contrast agent. In animal study, change of PET activity was not significant at all time point of CT scan both MR contrast agents. There was no significant change of HU between early and delayed CT, except for kidney. Early and delayed SUV in tumor and liver showed significant increase and decrease, respectively (P<0.05). Under the condition of most clinical study (< 0.2 mM), MR contrast agent did not influence on PET image quantitation.