• Title/Summary/Keyword: MLEM

Search Result 12, Processing Time 0.027 seconds

Comparison of Compton Image Reconstruction Algorithms for Estimation of Internal Radioactivity Distribution in Concrete Waste During Decommissioning of Nuclear Power Plant (원전 해체 시 방사성 콘크리트 폐기물 내부 방사능 분포 예측을 위한 컴프턴 영상 재구성 방법의 비교)

  • Lee, Tae-Woong;Jo, Seong-Min;Yoon, Chang-Yeon;Kim, Nak-Jeom
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.2
    • /
    • pp.217-225
    • /
    • 2020
  • Concrete waste accounts for approximately 70~80% of the total waste generated during the decommissioning of nuclear power plants (NPPs). Based upon the concentration of each radionuclide, the concrete waste from the decommissioning can be used in the determination of the clearance threshold used to classify waste as radioactive. To reduce the cost of radioactive concrete waste disposal, it is important to perform decontamination before self-disposal or limited recycling. Therefore, it is necessary to estimate the internal radioactivity distribution of radioactive concrete waste to ensure effective decontamination. In this study, the performance metrics of various Compton reconstruction algorithms were compared in order to identify the best strategy to estimate the internal radioactivity distribution in concrete waste during the decommissioning of NPPs. Four reconstruction algorithms, namely, simple back-projection, filtered back-projection, maximum likelihood expectation maximization (MLEM), and energy-deconvolution MLEM (E-MLEM) were used as Compton reconstruction algorithms. Subsequently, the results obtained by using these various reconstruction algorithms were compared with one another and evaluated, using quantitative evaluation methods. The MLEM and E-MLEM reconstruction algorithms exhibited the best performance in maintaining a high image resolution and signal-to-noise ratio (SNR), respectively. The results of this study demonstrate the feasibility of using Compton images in the estimation of the internal radioactive distribution of concrete during the decommissioning of NPPs.

Bayesian Image Reconstruction Using Edge Detecting Process for PET

  • Um, Jong-Seok
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.12
    • /
    • pp.1565-1571
    • /
    • 2005
  • Images reconstructed with Maximum-Likelihood Expectation-Maximization (MLEM) algorithm have been observed to have checkerboard effects and have noise artifacts near edges as iterations proceed. To compensate this ill-posed nature, numerous penalized maximum-likelihood methods have been proposed. We suggest a simple algorithm of applying edge detecting process to the MLEM and Bayesian Expectation-Maximization (BEM) to reduce the noise artifacts near edges and remove checkerboard effects. We have shown by simulation that this algorithm removes checkerboard effects and improves the clarity of the reconstructed image and has good properties based on root mean square error (RMS).

  • PDF

The Evaluation of Resolution Recovery Based Reconstruction Method, Astonish (Resolution Recovery 기반의 Astonish 영상 재구성 기법의 평가)

  • Seung, Jong-Min;Lee, Hyeong-Jin;Kim, Jin-Eui;Kim, Hyun-Joo;Kim, Joong-Hyun;Lee, Jae-Sung;Lee, Dong-Soo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.1
    • /
    • pp.58-64
    • /
    • 2011
  • Objective: The 3-dimensional reconstruction method with resolution recovery modeling has advantages of high spatial resolution and contrast because of its precise modeling of spatial blurring according to the distance from detector plane. The aim of this study was to evaluate one of the resolution recovery reconstruction methods (Astonish, Philips Medical), compare it to other iterative reconstructions, and verify its clinical usefulness. Materials and Methods: NEMA IEC PET body phantom and Flanges Jaszczak ECT phantom (Data Spectrum Corp., USA) studies were performed using Skylight SPECT (Philips) system under four different conditions; short or long (2 times of short) radius, and half or full (40 kcts/frame) acquisition counts. Astonish reconstruction method was compared with two other iterative reconstructions; MLEM and 3D-OSEM which vendor supplied. For quantitative analysis, the contrast ratios obtained from IEC phantom test were compared. Reconstruction parameters were determined by optimization study using graph of contrast ratio versus background variability. The qualitative comparison was performed with Jaszczak ECT phantom and human myocardial data. Results: The overall contrast ratio was higher with Astonish than the others. For the largest hot sphere of 37 mm diameter, Astonish showed about 27.1% and 17.4% higher contrast ratio than MLEM and 3D-OSEM, in short radius study. For long radius, Astonish showed about 40.5% and 32.6% higher contrast ratio than MLEM and 3D-OSEM. The effect of acquired counts was insignificant. In the qualitative studies with Jaszczak phantom and human myocardial data, Astonish showed the best image quality. Conclusion: In this study, we have found out that Astonish can provide more reliable clinical results by better image quality compared to other iterative reconstruction methods. Although further clinical studies are required, Astonish would be used in clinics with confidence for enhancement of images.

  • PDF

Super-spatial resolution method combined with the maximum-likelihood expectation maximization (MLEM) algorithm for alpha imaging detector

  • Kim, Guna;Lim, Ilhan;Song, Kanghyon;Kim, Jong-Guk
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2204-2212
    • /
    • 2022
  • Recently, the demand for alpha imaging detectors for quantifying the distributions of alpha particles has increased in various fields. This study aims to reconstruct a high-resolution image from an alpha imaging detector by applying a super-spatial resolution method combined with the maximum-likelihood expectation maximization (MLEM) algorithm. To perform the super-spatial resolution method, several images are acquired while slightly moving the detector to predefined positions. Then, a forward model for imaging is established by the system matrix containing the mechanical shifts, subsampling, and measured point-spread function of the imaging system. Using the measured images and system matrix, the MLEM algorithm is implemented, which converges towards a high-resolution image. We evaluated the performance of the proposed method through the Monte Carlo simulations and phantom experiments. The results showed that the super-spatial resolution method was successfully applied to the alpha imaging detector. The spatial resolution of the resultant image was improved by approximately 12% using four images. Overall, the study's outcomes demonstrate the feasibility of the super-spatial resolution method for the alpha imaging detector. Possible applications of the proposed method include high-resolution imaging for alpha particles of in vitro sliced tissue and pre-clinical biologic assessments for targeted alpha therapy.

Improvement of Analytic Reconstruction Algorithms Using a Sinogram Interpolation Method for Sparse-angular Sampling with a Photon-counting Detector

  • Kim, Dohyeon;Jo, Byungdu;Park, Su-Jin;Kim, Hyemi;Kim, Hee-Joung
    • Progress in Medical Physics
    • /
    • v.27 no.3
    • /
    • pp.105-110
    • /
    • 2016
  • Sparse angular sampling has been studied recently owing to its potential to decrease the radiation exposure from computed tomography (CT). In this study, we investigated the analytic reconstruction algorithm in sparse angular sampling using the sinogram interpolation method for improving image quality and computation speed. A prototype of the spectral CT system, which has a 64-pixel Cadmium Zinc Telluride (CZT)-based photon-counting detector, was used. The source-to-detector distance and the source-to-center of rotation distance were 1,200 and 1,015 mm, respectively. Two energy bins (23~33 keV and 34~44 keV) were set to obtain two reconstruction images. We used a PMMA phantom with height and radius of 50.0 mm and 17.5 mm, respectively. The phantom contained iodine, gadolinium, calcification, and lipid. The Feld-kamp-Davis-Kress (FDK) with the sinogram interpolation method and Maximum Likelihood Expectation Maximization (MLEM) algorithm were used to reconstruct the images. We evaluated the signal-to-noise ratio (SNR) of the materials. The SNRs of iodine, calcification, and liquid lipid were increased by 167.03%, 157.93%, and 41.77%, respectively, with the 23~33 keV energy bin using the sinogram interpolation method. The SNRs of iodine, calcification, and liquid state lipid were also increased by 107.01%, 13.58%, and 27.39%, respectively, with the 34~44 keV energy bin using the sinogram interpolation method. Although the FDK algorithm with the sinogram interpolation did not produce better results than the MLEM algorithm, it did result in comparable image quality to that of the MLEM algorithm. We believe that the sinogram interpolation method can be applied in various reconstruction studies using the analytic reconstruction algorithm. Therefore, the sinogram interpolation method can improve the image quality in sparse-angular sampling and be applied to CT applications.

Dose and Image Evaluations of Imaging for Radiotherapy (방사선치료를 위한 영상장비의 선량 및 영상 평가)

  • Lee, Hyounggun;Yoon, Changyeon;Kim, Tae Jun;Kim, Dongwook;Chung, Weon Kyu;Park, Sung Ho;Lee, Wonho
    • Progress in Medical Physics
    • /
    • v.23 no.4
    • /
    • pp.292-302
    • /
    • 2012
  • The patient dose in advanced radiotherapy techniques is an important issue. These methods should be evaluated to reduce the dose in diagnostic imaging for radiotherapy. Especially, the Computed Tomography in radiotherapy has been used widely; hence the CT was evaluated for dose and image in this study. The evaluations for dose and image were done in equal condition due to compare the dose and image simultaneously. Furthermore, the possibility of dose and image evaluations by using the Monte Carlo simulation MCNPX was confirmed. We made the iterative reconstruction for low dose CT image to elevate image quality with Maximum Likelihood Expectation Maximization; MLEM. The system we developed is expected to be used not only to reduce the patient dose in radiotherapy, also to evaluate the overall factors of image modalities in industrial research.

High performance γ-ray imager using dual anti-mask method for the investigation of high-energy nuclear materials

  • Lee, Taewoong;Lee, Wonho
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2371-2376
    • /
    • 2021
  • As the γ-ray energy increases, a reconstructed image becomes noisy and blurred due to the penetration of the γ-ray through the coded mask. Therefore, the thickness of the coded mask was increased for high energy regions, resulting in severely decreased the performance of the detection efficiency due to self-collimation by the mask. In order to overcome the limitation, a modified uniformly redundant array γ-ray imaging system using dual anti-mask method was developed, and its performance was compared and evaluated in high-energy radiation region. In the dual anti-mask method, the two shadow images, including the subtraction of background events, can simultaneously contribute to the reconstructed image. Moreover, the reconstructed images using each shadow image were integrated using a hybrid update maximum likelihood expectation maximization (h-MLEM). Using the quantitative evaluation method, the performance of the dual anti-mask method was compared with the previously developed collimation methods. As the shadow image which was subtracted the background events leads to a higher-quality reconstructed image, the reconstructed image of the dual anti-mask method showed high performance among the three collimation methods. Finally, the quantitative evaluation method proves that the performance of the dual anti-mask method was better than that of the previously reconstruction methods.

Optimization of image reconstruction method for dual-particle time-encode imager through adaptive response correction

  • Dong Zhao;Wenbao Jia;Daqian Hei;Can Cheng;Wei Cheng;Xuwen Liang;Ji Li
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1587-1592
    • /
    • 2023
  • Time-encoded imagers (TEI) are important class of instruments to search for potential radioactive sources to prevent illicit transportation and trafficking of nuclear materials and other radioactive sources. The energy of the radiation cannot be known in advance due to the type and shielding of source is unknown in practice. However, the response function of the time-encoded imagers is related to the energy of neutrons or gamma-rays. An improved image reconstruction method based on MLEM was proposed to correct for the energy induced response difference. In this method, the count vector versus time was first smoothed. Then, the preset response function was adaptively corrected according to the measured counts. Finally, the smoothed count vector and corrected response were used in MLEM to reconstruct the source distribution. A one-dimensional dual-particle time-encode imager was developed and used to verify the improved method through imaging an Am-Be neutron source. The improvement of this method was demonstrated by the image reconstruction results. For gamma-ray and neutron images, the angular resolution improved by 17.2% and 7.0%; the contrast-to-noise ratio improved by 58.7% and 14.9%; the signal-to-noise ratio improved by 36.3% and 11.7%, respectively.

Rule Induction Considering Implication Relations Between Conclusions

  • Inuiguchi, Masahiro;Inoue, Masanori;Kusunoki, Yoshifumi
    • Industrial Engineering and Management Systems
    • /
    • v.10 no.1
    • /
    • pp.65-73
    • /
    • 2011
  • In rough set literatures, methods for inducing minimal rules from a given decision table have been proposed. When the decision attribute is ordinal, inducing rules about upward and downward unions of decision classes is advantageous in the simplicity of obtained rules. However, because of independent applications of the rule induction method, inclusion relations among upward/downward unions in conclusion parts are not inherited to the condition parts of obtained rules. This non-inheritance may debase the quality of obtained rules. To ensure that inclusion relations among conclusions are inherited to conditions, we propose two rule induction approaches. The performances of the proposed approaches considering the inclusion relations between conclusions are examined by numerical experiments.

A Study on the Ordered Subsets Expectation Maximization Reconstruction Method Using Gibbs Priors for Emission Computed Tomography (Gibbs 선행치를 사용한 배열된부분집합 기대값최대화 방출단층영상 재구성방법에 관한 연구)

  • Im, K. C.;Choi, Y.;Kim, J. H.;Lee, S. J.;Woo, S. K.;Seo, H. K.;Lee, K. H.;Kim, S. E.;Choe, Y. S.;Park, C. C;Kim, B. T.
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.5
    • /
    • pp.441-448
    • /
    • 2000
  • 방출단층영상 재구성을 위한 최대우도 기대값최대화(maximum likelihood expectation maximization, MLEM) 방법은 영상 획득과정을 통계학적으로 모델링하여 영상을 재구성한다. MLEM은 일반적으로 사용하여 여과후역투사(filtered backprojection)방법에 비해 많은 장점을 가지고 있으나 반복횟수 증가에 따른 발산과 재구성 시간이 오래 걸리는 단점을 가지고 있다. 이 논문에서는 이러한 단점을 보완하기 위해 계산시간을 현저히 단축시킨 배열된부분집합 기대값최대화(ordered subsets expectation maximization. OSEM)에 Gibbs 선행치인 membrance (MM) 또는 thin plate(TP)을 첨가한 OSEM-MAP (maximum a posteriori)을 구현함으로써 알고리즘의 안정성 및 재구성된 영상의 질을 향상시키고자 g나다. 실험에서 알고리즘의 수렴시간을 가속화하기 위해 투사 데이터를 16개의 부분집합으로 분할하여 반복연산을 수행하였으며, 알고리즘의 성능을 비교하기 위해 소프트웨어 모형(원숭이 뇌 자가방사선, 수학적심장흉부)을 사용한 영상재구성 결과를 제곱오차로 비교하였다. 또한 알고리즘의 사용 가능성을 평가하기 위해 물리모형을 사용하여 PET 기기로부터 획득한 실제 투사 데이터를 사용하였다.

  • PDF