DOI QR코드

DOI QR Code

High performance γ-ray imager using dual anti-mask method for the investigation of high-energy nuclear materials

  • Lee, Taewoong (Global Institute of Technology, KEPCO KPS) ;
  • Lee, Wonho (School of Health and Environmental Science)
  • Received : 2020.07.02
  • Accepted : 2021.01.25
  • Published : 2021.07.25

Abstract

As the γ-ray energy increases, a reconstructed image becomes noisy and blurred due to the penetration of the γ-ray through the coded mask. Therefore, the thickness of the coded mask was increased for high energy regions, resulting in severely decreased the performance of the detection efficiency due to self-collimation by the mask. In order to overcome the limitation, a modified uniformly redundant array γ-ray imaging system using dual anti-mask method was developed, and its performance was compared and evaluated in high-energy radiation region. In the dual anti-mask method, the two shadow images, including the subtraction of background events, can simultaneously contribute to the reconstructed image. Moreover, the reconstructed images using each shadow image were integrated using a hybrid update maximum likelihood expectation maximization (h-MLEM). Using the quantitative evaluation method, the performance of the dual anti-mask method was compared with the previously developed collimation methods. As the shadow image which was subtracted the background events leads to a higher-quality reconstructed image, the reconstructed image of the dual anti-mask method showed high performance among the three collimation methods. Finally, the quantitative evaluation method proves that the performance of the dual anti-mask method was better than that of the previously reconstruction methods.

Keywords

Acknowledgement

This work was supported by the Nuclear Safety Research Program through the Korea Foundation Of Nuclear Safety (KoFONS) using the financial resource granted by the Nuclear Safety and Security Commission (No. 1903006) and the National Research Foundation of Korea grant funded by the Korea government(MSIT) (No. 2020R1A2C1005924) of the Republic of Korea.

References

  1. E. Fenimore, Coded aperture imaging: predicted performance of uniformly redundant arrays, Appl. Optic. 17 (22) (1978) 3562-3570. https://doi.org/10.1364/AO.17.003562
  2. E. Fenimore, T. Cannon, Coded aperture imaging with uniformly redundant arrays, Appl. Optic. 17 (3) (1978) 337-347. https://doi.org/10.1364/AO.17.000337
  3. W. Cook, M. Finger, T. Prince, E. Stone, Gamma-ray imaging with a rotating hexagonal uniformly redundant array, IEEE Transactions on Nuclear Science NS- 31 (1998) 771-775.
  4. A. Goldwurm, K. Byard, A. Dean, C. Hall, J. Harding, Laboratory images with HURA coded apertures, Astron. Astrophys. 227 (1990) 640-648.
  5. P. Durrant, M. Dallimore, I. Jupp, D. Ramsden, The application of pinhole and coded aperture imaging in the nuclear environment, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 422 (1999) 667-671. https://doi.org/10.1016/S0168-9002(98)01014-6
  6. S. Gottesman, E. Fenimore, New family of binary arrays for coded aperture imaging, Appl. Optic. 28 (20) (1989) 4344-4352. https://doi.org/10.1364/AO.28.004344
  7. T. Lee, W. Lee, Compact hybrid gamma camera with a coded aperture for investigation of nuclear materials, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 767 (2014) 5-13. https://doi.org/10.1016/j.nima.2014.07.031
  8. M. Cieslak, K. Gamage, R. Glover, Coded-aperture imaging systems: past, present and future development-A review, Radiat. Meas. 92 (2016) 59-71. https://doi.org/10.1016/j.radmeas.2016.08.002
  9. Electric Power Research Institute, Use of Portable Gamma Detector Systems during Decommissioning, EPRI Report, 2019. TR-3002015953.
  10. S. Sun, Z. Zhang, L. Shuai, D. Li, Y. Wang, Y. Liu, X. Huang, H. Tang, T. Li, P. Chai, X. Jiang, B. Ma, M. Zhu, X. Wang, Y. Zhang, W. Zhou, F. Zeng, J. Guo, L. Sun, M. Yang, Y. Zhang, C. Wei, C. Ma, L. Wei, Development of a panorama codedaperture gamma camera for radiation detection, Radiat. Meas. 77 (2015) 34-40. https://doi.org/10.1016/j.radmeas.2015.04.014
  11. L. Smith, C. Chen, D. Wehe, Z. He, Hybrid collimation for industrial gamma-ray imaging: combining spatially coded and Compton aperture data, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 462 (2001) 576-587. https://doi.org/10.1016/S0168-9002(00)01148-7
  12. V. Paradiso, K. Amgarou, N. Lanaute, V. Schoepff, G. Amoyal, C. Mahe, O. Beltramello, E. Linard, A panoramic coded aperture gamma camera for radioactive hotspots localization, J. Instrum. 11 (2017) P11010. https://doi.org/10.1088/1748-0221/11/11/P11010
  13. H. Kim, S. Ye, Y. Shin, G. Lee, G. Kim, Radiation imaging with a rotational modulation collimator (RMC) coupled to a Cs2LiYCl6:Ce (CLYC) detector, J. Kor. Phys. Soc. 69 (2016) 1644-1650. https://doi.org/10.3938/jkps.69.1644
  14. H. Kim, H. Choi, G. Lee, S. Ye, M. Smith, G. Kim, A Monte Carlo simulation study for the gamma-ray/neutron dual-particle imager using rotational modulation collimator (RMC), J. Radiol. Prot. 38 (1) (2018) 299-309. https://doi.org/10.1088/1361-6498/aaa3c8
  15. J. Braga, T. Villela, U. Jayanthi, F. D'Amico, J. Neri, A new mask-antimask codedaperture telescope for hard X-ray astronomy, Exp. Astron. 2 (2) (1991) 101-113. https://doi.org/10.1007/BF00576323
  16. R. Accorsi, F. Gasparini, R. Lanza, Optimal coded aperture patterns for improved SNR in nuclear medicine imaging, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 474 (3) (2001) 273-284. https://doi.org/10.1016/S0168-9002(01)01326-2
  17. T. Lee, S. Kwak, W. Lee, Investigation of nuclear material using a compact modified uniformly redundant array gamma camera, Nuclear Engineering and Technology 50 (6) (2018) 923-928. https://doi.org/10.1016/j.net.2018.04.006
  18. Online. Available: http://www.hamamatsu.com/jp/en/product/category/3100/ 3002/H8500C/index.html.
  19. Online. Available: http://www.hilger-crystals.co.uk/arrays.asp.
  20. V. Popov, S. Majewski, B. Welch, A novel readout concept for multianode photomultiplier tubes with pad matrix anode layout, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 567 (2006) 319-322. https://doi.org/10.1016/j.nima.2006.05.114
  21. W. Lee, T. Lee, 4π FOV compact Compton camera for nuclear material investigations, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 652 (2011) 33-36. https://doi.org/10.1016/j.nima.2011.01.140
  22. L. Schultz, M. Wallace, M. Galassi, A. Hoover, M. Mocko, D. Palmer, S. Tornga, R. Kippen, M. Hynes, M. Toolin, B. Harris, J. McElroy, D. Wakeford, R. Lanza, B. Horn, D. Wehe, Hybrid coded aperture and Compton imaging using an active mask, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 608 (2) (2009) 267, 264.
  23. W. Lee, D. Wehe, M. Jeong, P. Barton, A dual modality gamma camera using LaCl3(Ce) Scintillator, IEEE Trans. Nucl. Sci. 56 (1) (2009) 308-315. https://doi.org/10.1109/TNS.2008.2011051