• Title/Summary/Keyword: Lyapunov inequalities

Search Result 118, Processing Time 0.027 seconds

New Robust $H_{\infty}$ Performance Condition for Uncertain Discrete-Time Systems

  • Zhai, Guisheng;Lin, Hai;Kim, Young-Bok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.322-326
    • /
    • 2003
  • In this paper, we establish a new robust $H_{\infty}$ performance condition for uncertain discrete-time systems with convex polytopic uncertainties. We express the condition as a set of linear matrix inequalities (LMIs), which are used to check stability and $H_{\infty}$ disturbance attenuation level by a parameter-dependent Lyapunov matrix. We show that the new condition provides less conservative result than the existing ones which use single Lyapunov matrix. We also show that the robust $H_{\infty}$ state feedback design problem for such uncertain discrete-time systems can be easily dealt with using the approach. The key point in this paper is to propose a kind of decoupling between the Lyapunov matrix and the system matrices in the parameter-dependent matrix inequality by introducing one new matrix variable.

  • PDF

On $\phi_0-boundedness$ for the comparison differential system

  • An Jeong Hyang
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.9 no.4
    • /
    • pp.75-79
    • /
    • 2004
  • We investigate various $\phi_0-boundedness$ and $\phi_0-Lagrange$ stability of the trivial solution of comparison differential system. We also investigated the corresponding boundedness concepts of the trivial solution of the differential system using the theory of differential inequalities through cones and the method of cone valued Lyapunov functions.

  • PDF

A Line-integral Fuzzy Lyapunov Functional Approach to Sampled-data Tracking Control of Takagi-Sugeno Fuzzy Systems

  • Kim, Han Sol;Joo, Young Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2521-2529
    • /
    • 2018
  • This paper deals with a sampled-data tracking control problem for the Takagi-Sugeno fuzzy system with external disturbances. We derive a stability condition guaranteeing both asymptotic stability and H-infinity tracking performance by employing a newly proposed time-dependent line-integral fuzzy Lyapunov-Krasovskii functional. A new integral inequality is also introduced, by which the proposed stability condition is formulated in terms of linear matrix inequalities. Finally, the effectiveness of the proposed method is demonstrated through a simulation example.

New Unified bounds for the solution of the Lyapunov matrix equation for Decentralized Singularly Perturbed Unified System (분산 특이변동 시스템의 리아푸노프 행렬 방정식의 해에 대한 단일 경계치)

  • Lee, Dong-Gi;Oh, Do-Chang
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.1
    • /
    • pp.34-42
    • /
    • 2009
  • In this paper, new bounds for the solution of the unified Lyapunov matrix equation for decentralized singularly perturbed systemare obtained, and some of the existing works using deficient assumptions are also generalized.

A New Augmented Lyapunov Functional Approach to Robust Stability Criteria for Uncertain Fuzzy Neural Networks with Time-varying Delays (시변 지연이 존재하는 불확실 퍼지 뉴럴 네트워크의 강인 안정성 판별법에 대한 새로운 리아프노프 함수법)

  • Kwon, Oh-Min;Park, Myeong-Jin;Park, Ju-Hyun;Lee, Sang-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.11
    • /
    • pp.2119-2130
    • /
    • 2011
  • This paper proposes new delay-dependent robust stability criteria for neural networks with time-varying delays. By construction of a suitable Lyapunov-Krasovskii's (L-K) functional and use of Finsler's lemma, new stability criteria for the networks are established in terms of linear matrix inequalities (LMIs) which can be easily solved by various effective optimization algorithms. Two numerical examples are given to illustrate the effectiveness of the proposed methods.

Intelligent Scheduling Control of Networked Control Systems with Networked-induced Delay and Packet Dropout

  • Li, Hongbo;Sun, Zengqi;Chen, Badong;Liu, Huaping;Sun, Fuchun
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.6
    • /
    • pp.915-927
    • /
    • 2008
  • Networked control systems(NCSs) have gained increasing attention in recent years due to their advantages and potential applications. The network Quality-of-Service(QoS) in NCSs always fluctuates due to changes of the traffic load and available network resources. To handle the network QoS variations problem, this paper presents an intelligent scheduling control method for NCSs, where the sampling period and the control parameters are simultaneously scheduled to compensate the effect of QoS variation on NCSs performance. For NCSs with network-induced delays and packet dropouts, a discrete-time switch model is proposed. By defining a sampling-period-dependent Lyapunov function and a common quadratic Lyapunov function, the stability conditions are derived for NCSs in terms of linear matrix inequalities(LMIs). Based on the obtained stability conditions, the corresponding controller design problem is solved and the performance optimization problem is also investigated. Simulation results are given to demonstrate the effectiveness of the proposed approaches.

Delay-dependent Fuzzy H Controller Design for Delayed Fuzzy Dynamic Systems (시간지연 퍼지 시스템의 지연 종속 퍼지 H제어기 설계)

  • Lee, Kap-Rai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.5
    • /
    • pp.571-576
    • /
    • 2004
  • This paper presents a delay dependent fuzzy $H_{\infty}$ controller design method for delayed fuzzy dynamic systems. Using delay-dependent Lyapunov function, the global exponential stability and $H_{\infty}$ performance problem arc discussed. A sufficient conditions for the existence of fuzzy controller is presented in terms of linear matrix inequalities(LMIs). A simulation example is given to illustrate the design procedures and performances of the proposed methods.

Coprime Factor Reduction of Parameter Varying Controller

  • Saragih, Roberd;Widowati, Widowati
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.6
    • /
    • pp.836-844
    • /
    • 2008
  • This paper presents an approach to order reduction of linear parameter varying controller for polytopic model. Feasible solutions which satisfy relevant linear matrix inequalities for constructing full-order parameter varying controller evaluated at each polytopic vertices are first found. Next, sufficient conditions are derived for the existence of a right coprime factorization of parameter varying controller. Furthermore, a singular perturbation approximation for time invariant systems is generalized to reduce full-order parameter varying controller via parameter varying right coprime factorization. This generalization is based on solutions of the parameter varying Lyapunov inequalities. The closed loop performance caused by using the reduced order controller is developed. To examine the performance of the reduced-order parameter varying controller, the proposed method is applied to reduce vibration of flexible structures having the transverse-torsional coupled vibration modes.

Stability Analysis of a Multi-Link TCP Vegas Model

  • Park, Poo-Gyeon;Choi, Doo-Jin;Choi, Yoon-Jong;Ko, Jeong-Wan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1072-1077
    • /
    • 2004
  • This paper provides a new approach to analyze the stability of a general multi-link TCP Vegas, which is a kind of feedback-based congestion algorithm. Whereas the conventional approaches use the approximately linearized model of the TCP Vegas along equilibrium pints, this approach models a multi-link TCP Vegas network in the form of a piecewise linear multiple time-delay system. And then, based on the exactly characterized dynamic model, this paper presents a new stability criterion via a piecewise and multiple delay-dependent Lyapunov-Krasovskii function. Especially, the resulting stability criterion is formulated in terms of linear matrix inequalities (LMIs).

  • PDF

New Stability Analysis of a Single Link TCP Vegas Model

  • Park, Poo-Gyeon;Choi, Doo-Jin;Choi, Yoon-Jong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2430-2434
    • /
    • 2003
  • This paper provides a new approach to analyze the stability of TCP Vegas, which is a kind of feedback-based congestion control algorithm. Whereas the conventional approaches use the approximately linearized model of the TCP Vegas along equilibrium points, this approach uses the exactly characterized dynamic model to get a new stability criterion via a piecewise and delay-dependent Lyapunov-Krasovskii function. Especially, the resulting stability criterion is formulated in terms of linear matrix inequalities (LMIs). Using the new criterion, this paper shows that the current TCP Vegas algorithm is stable in the sufficiently wide region of network delay and link capacity.

  • PDF