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Abstract:

This paper provides a new approach to analyze the stability of TCP Vegas, which is a kind of feedback-based

congestion control algorithm. Whereas the conventional approaches use the approximately linearized model of the TCP Vegas

along equilibrium points, this approach uses the exactly characterized dynamic model to get a new stability criterion via a

piecewise and delay-dependent Lyapunov-Krasovskii function. Especially, the resulting stability criterion is formulated in terms

of linear matrix inequalities (LMIs). Using the new criterion, this paper shows that the current TCP Vegas algorithm is stable

in the sufficiently wide region of network delay and link capacity.
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1 INTRODUCTION

A feedback-based congestion control algorithm is essential
to realize efficient data transfer services in packed-switched
networks. TCP (Transmission Control Protocol), a category
of feedback-based congestion control mechanisms, has been
widely used in the current Internet. In 1981, RFC(Request
for Comments)-793 [1] introduced the basic structure of the
TCP, which is a window-based flow control mechanism to
pace the transmission of packets. And, RFC-1122 [2] pre-
sented the second version of TCP called TCP Tahoe, which
includes a congestion avoidance scheme and a fast retrans-
mission additionally in 1989. Furthermore, RFC-2001 [3]
presented the third version of TCP called TCP Reno, which
includes a fast recovery scheme additionally to the TCP
Tahoe in 1997. Now, the TCP Reno is adopted as a standard
TCP algorithm by RFC.

Recently, another version of TCP called TCP Vegas has been
proposed by Brakmo et.al. [4], which can achieve better per-
formance than the TCP Reno. The TCP Vegas has the fol-
lowing advantages over the existing TCP Reno: (1) a new
time-out mechanism, (2) an improved congestion avoidance
mechanism, and (3) a modified slow-start mechanism. In
particular, the congestion avoidance mechanism of the TCP
Vegas controls the number of on-the-fly packets in the net-
work. More specially, the TCP Vegas measures an RTT
(Round Trip Time), which is elapsed time from a packet
transmission to the receipt of its corresponding ACK (Ac-
knowledgement) packet. It then uses the measured RTT as
feedback information from the network. Namely, if the mea-
sured RTT is getting large, the source host of the TCP Vegas
conjectures that the network is falling into congestion. Then,
the window size is throttled. If the measured RTTs become
small, on the other hand, the source host recognizes that the
network is relieved from the congestion and thus increases
the window size again. In the TCP Vegas, it is not necessary
for the source host to wait for a packet loss in the network to
detect congestion. This is an advantage of the TCP Vegas
over other early versions of TCP. With this mechanism, the
window size of a source host is expected to converge to a
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constant value in steady state. The simulation and experi-
mental results show that the congestion control mechanism
of the TCP Vegas leads to 37-71 % higher throughput than
that of the TCP Reno.

The dynamics of the TCP Vegas has been analytically in-
vestigated by several papers [5], [6], [7]. In those papers,
the evolution of a window size has been approximated by
a fluid model and the throughput of each connection has
been obtained. However, the stability of the TCP Vegas has
not been investigated at all, even though the TCP Vegas is
essentially a feedback congestion control and thus a stable
operation of the control mechanism is extremely important.

More recently, some people have tried to analyze the stability
of TCP Vegas model based on the dynamic TCP model. But,
since the dynamic TCP model is nonlinear time-varying sys-
tem with time-delay, people imposed some critical assump-
tions such as no-delay, simple linear system, and so on, for
the dynamic TCP model. And most of them presented some
results based on the discrete-time versions of the dynamic
TCP Vegas model [8], [9], [10]. Especially, stability analysis
for continuous-time dynamics of TCP Vegas has been intro-
duced by [11], [12]. They used a classical stability method
for the loop gain of the dynamic TCP Vegas model in the
frequency-domain. Furthermore, based on the proposed sta-
bility analysis method for the dynamic TCP Vegas, they
presented a modified TCP Vegas algorithm. But, since they
developed the new stability analysis method based on an
approximated dynamic model of TCP Vegas, in which they
approximated the sgn(:) function with a smooth tan™!(-)
function, they did not sufficiently describe the stability of
the dynamic TCP Vegas.

In this paper, we fully account the dynamics of single link
TCP Vegas model. Then, we represent the TCP Vegas model
with a piecewise linear system with time-delay. And we pro-
vide a new stability analysis criterion associated with a piece-
wise and delay-dependent Lyapunov-Krasovskii function for
the system. Especially, this paper formulates the resulting
stability criterion as a convex optimization problem in terms
of linear matrix inequalities (LMIs). Based on the new crite-
ion and the previous method Choe and Low [12], this paper
shows that the current TCP Vegas algorithm can become



stable in the sufficiently wide region of network delay and
link capacity. This paper is organized as follows. Section 2
describes the TCP Vegas model. And Section 3 presents a
new stability criterion in terms of LMIs. Section 4 compares
the stable regions obtained by the proposed new stability
criterion and the loop gain method of Choe and Low [12].
The notation of this paper is fairly standard.

2 TCP VEGAS NETWORK MODEL
Before presenting a new model of the TCP Vegas, we shall
briefly explain the general TCP Vegas network model. Gen-
erally, a network is modeled as a set of L links with finite
capacities ¢ = (¢;,I € L). They are shared by a set of N
sources indexed by r. Each source r uses a set of links de-
fined by the L x N routing matrix

(1)

R _ 1 if source r uses link [
= 0 otherwise

Associated with each link [ is a congestion measure p;(t) we
will call ‘price’; pi(t) is the scaled queueing delay at link .
Each source r maintains a rate z,(t) in packets/sec. At time
t, we assume source r observes the aggregate price in its path

q-(t) = Z Riepi(t — i) (2)
7

and link [ observes the aggregate source rate

w(t) = > Rpa.(t—1l) (3)

where Tl]; and 75, denote the forward and backward RTTs of
the equilibrium RTT T such as

T, = 1l +7, Vel (4)

Then, Low et.al. [13] models TCP Vegas, with its associated
queue management, as the following dynamical system :

ir(t) = T72(t)sgn(z.(t)g-(t) — ard.) (5)

) cyt)—c) i p(t) >0
= {é(yl(t)—cm =0 O

where (2)" = maz{0,z2}, sgn(z) = 1if z > 0, =1 if 2 < 0,
and 0 if z = 0. Here, o, is a Vegas protocol parameter, and
d, is the round trip propagation delay of source r. Price
pi(t) is the queueing delay at link [ and ¢, (¢) is the end-to-
end queueing delay of source r. Round trip time of source r
is defined as

T.(t) = dr+q(t) (7)

with equilibrium value 7} defined in (4). An interpretation
of TCP Vegas algorithm is that each source r adjusts its
rate to maintain a,.d, number of its own packets buffered in
the queues in its path. The link algorithm (6) is automati-
cally carried out by the buffer process. The source algorithm
(5) increments or decrements the “window” by 1 packet per
round trip time, according as the number z.(t)qg,(t) of pack-
ets buffered in the links is smaller or bigger than a.,d,.

In this paper, we consider a single link of capacity c¢ shared by
N homogeneous sources with round trip propagation delay
d and thus ¢, (t) and y(t) in the TCP model (5) and (6) have
the following form:

qr(t) = P(t_ﬂ?): y(t) = er(t_Trf)-

And since N homogeneous source sharing a single link is
equivalent to the large 1 source of a single link, we can con-
sider the above model as a Vegas model of a single link of
capacity ¢ shared by 1 homogeneous source with round trip
propagation delay d as follows

#(t) = —T*(t)sgn (z(t)p(t —7") — ad) (8)

(x(t—1T)y—¢)Jc ifp(t) >0 ()
(x(t =) =) /e ifp(t) =0

where ad = Na,d,. Then, we assume followings for simplic-
ity without loss of generality.

o Assumption 1 : Since 7, << 7y in many case, we can
shift the backward time-delay term to the forward time-delay
term

=0, 7p=T" (10)

where T* = d + 2¢ is equilibrium RTT.
o Assumption 2 : We limit z(¢) and p(t) with any physical
bounds Z and p such as

0<=z(t)<=z 0<p(t)<p (11)

e Assumption 3 : RTT has the following upper and lower
bounds

d <T@ < d+p (12)

3 NEW STABILITY ANALYSIS
We shall first redefine the variables x(t) and p(t) with the
following variables:

) = at)—c (13)
ut) = p(t)—ad/e. (14)

In this case, the physical constraints shown in (11) the as-
sumption 3 can be written as

m” () Mim(t) < 0, m” (t)Mam(t) < 0, (15)

where the extended state m(t), M, and M> denote

A T
mt) £ [ we) 1] (16)

[ 2 0 —Z+2

M, 2 0 0 0 , (17)
| —Z+2c 0 2(c* — Zc)
[0 0 0

M, 2 |0 2 —p+ 2ad/c 18)
| 0 —p+2ad/c 2(a’d*/c* — pad/c)

Furthermore, we can rewrite the model (8) and (9) with a
piecewise linear time-varying delayed system as follows: for
m(t) € S; and for i = 1,2

2431 m(t) = Ai(t)m(t)—B/tiT* m(a)da, (19)



where the system matrices (A4;(t), B) are defined as

0 0 (=12t
Aty £ | 1/ec 0 0 ,
0 0 0
0 0 0
B £ |1/c 0 0|,
0 0 0

and the switching zones S;, resulted from the switching func-
tion z(t)p(t) — ad, denote

s, & {m(t)‘mT(t)Mgim(t)<0}, (20)
0 1 adfe

My 2 (=1)° 1 0 ¢
adfc ¢ 0

We shall now consider the stability of the system above.
Since the system is piecewise and time-delayed, we shall sug-
gest the following piecewise and delay-dependent Lyaunov-
Krasovskii functional, which is modified from the functional
introduced by Park [14],

V(im(t—a),a €[0,T7]) = Vi + Vo + Va, (21)

where, for m; € S; and for ¢+ = 1,2

Vi £ m'(t)Pim(t),

Ve & / S m” (o) Zrn(a)dod],
—T* Jt+p

Vs 2 / m” (2)Qm(a)da.
t—T%*

For the functional above, we shall impose the following con-
dition for Vi in order to achieve the radial unboundedness of
Vi with respect to m(t): for any nonzero vector m(t) € S;
yielding the condition (11) in the assumption 3, or the con-
dition (15),

Vi(t) > 0, (22)

which can be written as follows: there exist nonnegative

scalars Ai;, A2;, and Ag; such that, for any nonzero m(t),

P; + A1 M1 + Xoi M3 + A3i Ms; > 0. (23)

With this condition, the positive definiteness of Z and @, or

Q>0, Z>0, (24)

says that V(z(t — a),a € [0, T7]) is radially unbounded with
respect to x(t).

As mentioned in the work [15], [16], when one uses a type
of piecewise Lyapunov function for the analysis of piece-
wise continuous-time systems, one should consider the de-
creasing property of the piecewise Lyapunov function at the
switching instant. Similarly, when a piecewise Lyapunov-
Krasovskii functional is considered, an important condition
that should be checked out is the variation of the Lyapunov-
Krasovskii functional on the switching surface constructed
by the switching function (z(t)p(t) — ad). In this model,
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there are only two switching zones related to one switching
surface and thus we simply need to have the following con-
tiuity condition:

mT (t)Pym(t) = mT (t) Pam(t)
for mT () Mzim(t) = mT (t) Maam(t)

(25)

0,

which can be written with the existence of a real number w
such that

P, =P +wMs, weR. (26)

Finally what we need for the stability is that its derivative
V in each switching zone S; should be strictly negative for
nonzero {m(t — a),a € [0,7"]} under the constraints (15).
We shall present such conditions in the following theorem.

Theorem 1: Suppose the TCP Vegas satisfies the as-
sumptions 1, 2, and 3. Then the piecewise linear time-
varying delayed model (19) with the equilibrium point
(z",p") = (¢,ad/c) is asymptotically stable, if there exist
matrices X = X7, Y, Z = 2T, P =PT,Q = Q7, and scalar

variables )\li, )\21‘, )\31‘, Hiiy 25y (35, W, for all i = ]., 2, ] = 1, 2

satisfying
Py + MMy 4 Xoi Mo + X3i M3 >0, (27)
(1,1) (1,2); T"ALZ
(1,2 -Q -T*B"Z | <0, (28)
T"ZA;; -T"ZB -T"Z
X Y
T >0, Q >0, Ai; >0, A2; >0, A3; >0, (29)
Y Z
p1: >0, po; >0, psi >0, (30)

where My, M> and Ms; were defined in (17), (18) and (20),
respectively, and

P = P (31)
P P+wMs, weR, (32)
(L) = PAy+AGP+T'X
—p1i My — p2i Mo — psi Ms;, (33)
(1,2);i = —-PB+Y+Q, (34)
0 0 —aiy
A = /e 0 0 |, (35)
0 0 0

aiy = —asy =d %, a2 = —az = (d+p)" 2.

Proof: We have already generated the conditions (27), (31),

and (32) in (23) and (26). What I need to show is that

the following time derivative of V(m(t — a),a € [0,T7]) in

each switching zone S; should be strictly negative for nonzero

{m(t—a),a € [0,T*]} under the constraints (15), which will
2result in the condition (28).



V o= Vi+Va+ Vs,
= 2 (Ai(t)m(t) - B /;T* M(a)da>T Pym(t)
- /OT* mT (t 4+ a) Zm(t + a)da
+T:mT (t)Zm(t) + m" (t)Qmi(t)
—m”(t = T")Qm(t —T")

_ [ mo ][ X0 XeGo ][ me
m(t) X% (i,t) Xoo m(t)
- /th* m” () Zm" (a)da.

where X11(t), Xi12(t), X22, and m(t) denote

Xi1(it) 2 PAt)+ AT P+ T AT (1) ZA(t),
X12(i,t) £ —-PB+Q-T AT (t)ZB,
Xo» 2 —Q+T°'B"ZB,
m(t) 2 /t 1 (a)da.
t—T*

Now we shall add the following term to the above equation

¢ m(t) X Y m(t)
0 = /t,T* [ () YTz || (e ]da
C [me ] [x v ] m)
B m(t) D m(t)

Therefore, we can get the following condition.

: mt) " [ m)
Vos [ mi) | L m ]
where
[ X (i) +T°X  Xi2(i,t) +Y
I = T (- T
Xlz(l;t) +Y X2z

The proof will complete if we find a sufficient condition that
makes the middle matrix block negative definite for all the
states in each zone satisfying the condition (15). One suffi-
cient condition can be chosen via the S-procedure as follows:
there are nonnegative scalar variables p1;, p2;, and ps; such
that, for all ¢ =1, 2,

0> (171) X12(17t)+Y
XL, t)+YT X ’
where
(1,1) = Xu(i,t) +T"°X — p1i My — pog Mo — pusi Ms;

Since A;(t) is time-varying, however, we cannot provide fea-
sible variables easily. Let us use the Schur complement tech-
nique to modify the condition into the following:

X11(i,t) —PB+Q+Y T Al (t)Z
0> | -B'P,+Q+Y"” -Q -T*B*7 |,
T*ZAi(t) -T*ZB -T*Z
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where X11(4,t) denotes

Xll(i,t) é PlAl(t) + A;F(t)Pl +T'X
—p1iMy — p2i Mo — psi Ms;.

In this case, we can now use a nice property of A;(t) that
A;(t) at any time belongs to a convex hull of {4;;};=1,» for
each i, i.e. A;(t) € cov(As1, Aiz), which results in the
condition (28). Therefore, the proof completes. [}

4 COMPARISONS

In this section, we demonstrate the proposed method with
respect to the stability condition of Choe and Low [12] for the
dynamic TCP Vegas model. We directly apply the proposed
method to Example 1 of Choe and Low [12]. Consider a
single link of capacity ¢ shared by N homogeneous sources
with round trip propagation delay d. And all sources have
the same target queue length . For this example, Choe and
Low [12] presented the following stability condition based on
their loop gain method in the frequency domain.

cd < (g - 1) aN (36)

For given a = 20 packets and N = 100 sources, we plot-
ted the stable regions by (36) and Theorem 1 in Figure 1
and 2, respectively. From now on, people have accepted that
TCP Vegas is a greatly stable TCP algorithm, but people
did not prove the great stability because a good analysis
method was not developed for the nonlinear time-varying
TCP model with time-delay. By means of applying the new
proposed method for this example, we show that the cur-
rent TCP Vegas algorithm is sufficiently stable in the wide
bandwidth(link capacity)-delay region.
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Fig. 1. The stable bandwidth-delay region of Choe and Low

5 CONCLUSION AND FURTHER WORKS
We have presented a new stability analysis method for the
single link dynamic TCP Vegas model. First, this paper
described the nonlinear(switched) time-varying TCP Vegas
model with time-delay by a piecewise linear time-invariant
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Fig. 2. The stable bandwidth-delay region by Theorem 1

dynamic system with time-delay. Then, a piecewise and
delay-dependent Lyapunov-Krasovskii function was applied
for the system. Consequently, this paper successfully devel-
oped new stability criterion for the single link dynamic TCP
Vegas model in terms of LMIs. By an example, we showed
that the proposed criterion performs much better than Choe
and Low [12] in the aspect of the exact describing the great
stability of TCP Vegas model.
stability analysis of the single link TCP Vegas model, we

Since we only treated the

will extend the proposed method to the general multi-link
TCP Vegas model in the near future. Furthermore, if we
apply the proposed method for performance-oriented prob-
lems of dynamic TCP Vegas model such as guaranteed cost,
saturation, tracking, and their combinations, we will exam-
ine closely the other problems of TCP network system. And
we believe that the proposed method will be the basis for

developing an advanced TCP algorithm.
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