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Abstract We investigate various

$0 -boundedness and 9o -Lagrange stability of the

trivial solution of comparison differential system. We also investigated the corresponding
boundedness concepts of the trivial solution of the differential system using the theory of
differential inequalities through cones and the method of cone valued Lyapunov functions.

#y -boundedness, ¢y -uniform bounded, quasimonotone nondecreasing,

b -Lagrange stability, cone valued Lyapunov functions.
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1. Intoduction
ILet R™ denote the n-dimensional Euclidean
space with any convenient norm || - |l, and inner
product( , ).

R, =[0,0), R'={ue R"| u;=> 0,
i=1,2,-,n),C[R, < R" R"

denotes the space of continuous functions
mapping R, X R" into R".
Consider the differential system.
r=f(t,z),z(kh) =25t >0 (A)

where f € C[R+><RN,RN].

Define Sp={xe R"| |lxl|<p, 0> 0}.
Let K R"beaconein R", n < N, and
Ve C[R,x S, K].

Define for (t,z) € R, X Sp,h > 0,

PR CEEEEEEEL B A

the function DtV(t,z) by

DtV(t,z) =
lim sup(% WV(t+ hy 2+ hf (2, 2)) ~ V(2 3)]

h-—0*

Consider the comparison differential system
u,:g(t7u)7 u(t()):“o; tOZO (B).
where g € C[R, X K,R"], and K is a cone
in R™.
Let , S(o) ={us K| |lull<p, 0>0},
ve C[R,xS8(p), K] and define for
(t,u) € R, < S(p), h> 0, the function

Dtv(t,u) by Dtu(t,u) =

(t+ h7u+ hg(t:u)) -—'U(t, u)]

Definition 1.1 (en A function
g: D->R"™ DC R", is said to be quasimonotone
nondecreasing relative to the cone K when it

satisfies that z,y€ D with
(P, y—2z) =0 for

r<,y and

*
some @y € Ky, then
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(¢0,9(y) —9(2)) = 0, where K, is adjoint
cone of Kg=K—{0}.

Definition 1.2(I6]) The trivial solution =10
of (A) is said to be

(B,) equibounded if for each @ = 0,4 € R ,
where exists 8= ((4, ) such that the inequlity

lxol <a implies. [x(¢toxql <8, £2¢
Other boundednessnotions (B,) ~ (Bg) can be
similarly defined [6,8].

Now we give cone valued ¢,-boundedness

definitions of the trivial solution of (B).

Definition 1.3 The differential system (B)
is said to be

(B}) #o-equibounded if for each @=0,
the R, B= ﬂ(tm o)
such that the inequlity (¢g, %) <
implies (¢, 7(t)) < B8 for all t=1,
where r(t) is maximal solution of (B)
and ¢ € Ky;

(B,) $o-uniform bounded if the 8 in (B]) is
independent of %;

there  exist

(B3) $o-quasi-equi-ultimately bounded if for
each ¢« >0 and % € R,, there exist
positive numbers N and T = T(#, o)

that the inequlity (@, %) <
implies (¢g, 7(t)) < N,t = t,+ T ;

(B}) $o-quasi-uniform ultimately bounded if

such

the T in (B;) is independent of to ;

(B:) do-equi-ultimately if (Bj) and (B3)
hold at the same time ;

(B;) do-uniform-ultimately bounded if (B)
and (B;) hold simultaneously ;

(B}) do-equi-Lagrange stable if (Bj) and

(S (1) hold simultaneously ;
(Bi) $o-uniform-ultimately bounded if (Bj3)

and  (S8) ({11) hold simultaneously ;

Lemma 1.4([71) Assume that (i)
Ve C[R,.xSp, K], V(t z) satisfies a Local
Lipschitz condition in z relative to K and for
(t,z) € R, x5, D"V (t,z) < g(t, V(¢ z));
(ii) g€ CR, X K,R"] and g(t,u) is
quasimonotone in u with respect to K for each
te R,.

If 7(t, %, uy) is a maximal solution of (B)
relative to K and z(t;ty, 7p) is any solution of
(A) with V(t %) <) ug, then on the common

interval of existence, we have
V(t,z(t, tﬁ,%)) <y r(1, to, )

2. Boundedness Theores

In this section, we investigate the
corresponding boundedness concepts of the
trivial solution 2= 0 of (A) using the theory of
differential inequalities through cones and the
method of cone-valued Lyapunov functions.

Let H={a € C[R,, R,] | a(t) is strictly

increasing in t and a(0) =0}

Theorem 2.1 Assume that there exist
functions V(t,z) and g(¢, u) with the following
properties;

(i) g€ C[R. X K,R", g(¢,0) =0,

g(t, u) is quasimonotone in u relative to K

(ii)V e C|R, X Sp,K],K C R",

V(t,0) =0, V(t,z) is locally Lipschitzion
in z, and for (t,z) € R, X Sp and
¢ € Ky
b(IlxD<(dy, V(t, 1), t=t,=0
(2.1) where b € H on the interval
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0 <u< o« and b(u)—o0 as u—co,
(i) DTV(tz) <i g(¢, V(L ),
(t,z) € Ry X Sp.
Then, the $o-equiboundedness of the system

(B) implies the equiboundedness of the system
(4)

Proof) Let @ >0 and 4 € R, be given,

and let % ll<a.
Since the equation (B) is ¢ -equibounded,

given o; = 0 and % € R,, there exists a

Gy = B (t,a) that is continuous in % for
each a such that (¢, 7(t, %y, ¥y)) < By, (2.2)

121y provide (¢g, %) < o .

Moreover, as b{u)—>00 as u—00, we can
choose a L = L(t;, a) verifying the relation
B, ) < b(L) (2.3)

Now let ug = V(t, %) in K.

Then, assumption (ii) and Lemma 1.4 show
that

Vit,z(t by, %)) <er(b ity u), t =ty (24)
where 7(t,t uy) is the maximal solution of the
system (B)

Suppose, if possible, that there is a solution
z(t, tyzp) with |lx oll<@ having that property
that, for some t1>tg . Hx(t, ty,xp)ll=L,

Then, because of relations (2.1),(2.2),(2.3), and
(2.4), there results the following absurdity;

b(L)=b(l1xlD< (¢, V(t,2)) =<
(do, 7t to,up)) < By (B2) < b(L).

The proof is complete, since this contradiction
implies that (B, )holds.

Theorem 2.2 Let the conditions of Theorem
2.1 hold with &(lIxID=<(¢ o V(¢ %)) being
replaced by

b(| 12D < (44, V{2, 0)) < alllxl) (2.5)

where a € H,

Then, (B)
bounded, the system (A) is likewise uniform
bounded.

if the system is  ¢o-uniform

a,=a(a) , which is

independent of B1=28,(a) in this
case, it is easy to see from the choice of L that

Poof) We choose

ty . Since

it is also independent of Zp .

Theorem 2.3 Under the assumptions of
Theorem 2.1, the @o-quasi—equi-ultimate

boundedness of the system B implies the
quasi-equi-ultimate boundedness of the system
A

Poof) By hypotheses, given oy = 0 and .
ty € R,, there exist positive numbers M and
T = T(ty, &) such that
(Do, T(t, b, u5)) < Nyt = 49+ T

whenever (¢, Uy) < .

(2.6)

Since b(u)—co with u, it is possible to find
a positive number N verifying

b(N) = N, @7

We choose ug = V(,2%;) in K and obtain the

estinate (24) as in Theorm 2.1. Now let there

exist a sequence ({t},t = tp+ T,t—>c0 as

k—oo such that, for some solution z(%, % %) of

(2.1) satisfying [lxol[<a,
‘We have ”x(tk, L 1 o)HzN-
We are led to a contradiction
b(N) < (¢o, V(tz(tpto, ) <
(o, T{tto,up)) < Ny < b(N)
This completes the proof of Theorem 2.3.

Theorem 2.4 Under the ssumptions of
Theorem 2.1, the equi-ultimately boundedness of
the system (B) implies the equi-ultimate
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boundedness of the system (A).
This proof of this theorem can be constructed
by combining the proofs of Theorem 2.1 and 2.3.

Theorem 2.5 Let the assumptions of Theorem
2.2 hold.

Then, the ®o-equi-Lagrange stability of the
system (B) assures the equi-Lagrange stability
of the system (4).

Proof) By Theorem 2.1, equioundedness of the
system (A) follows, and hence (S;) remains to

be proved.

Let €e>0,a >0, and ¢, € R, be given, and
let (¢g, up) < .

As in the proof of the theorem 2.1, there
a; = a;(ty,a) satisfying
a(llx gl <@ simulaneously.

Since (S;) holds, given a; = 0,b(e) >0,
and t, € R,, there exists a T= T(ty,€,a)
such that (¢g, 4y) < @; implies
(B0 (b, b)) < b(€), £ to+ T

Choose 1y = U{ty, )

Then U(t,z) <, r(t).

Now choose ¢; > 0 such that.

exists Hx gli<a,

(2.8)

If possible, let there exist a sequence {%;},

ty > ty+ T, ty>o0 as k—oo, such that for

some solution z(t, t, %) satisfying |l oll<ea,,
we have 1x(f,tg,x)ll=e.
Then b(e) < (¢p, V(tp o(tity, 1)) <
(@0, T(teto, up)) < b(e) which proves (S;).
The proof is complete.

Theorem 2.6 Let the assumptions of Theorem
2.2 hold.

Then, the Po-uniform Lagrange stability of
the system (B) implies
stability of the system (A4).

uniform Lagrange
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