• Title/Summary/Keyword: Lyapunov equation

Search Result 177, Processing Time 0.026 seconds

Dynamic Characteristics and Stability of an Infrared Search and Track (적외선 탐색 및 추적장비의 동적 특성 및 안정화)

  • Choi, Jong-Ho;Park, Yong-Chan;Lee, Joo-Hyoung;Choi, Young-Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.116-124
    • /
    • 2008
  • Current paper investigates the dynamic behavior and stability of an infrared search and track subjected to external disturbance having gimbal structure with three rotating axes keeping constant angular velocity in the azimuth direction. Euler-Lagrange equation is applied to derive the coupled nonlinear dynamic equation of motion of infrared search and track and the characteristics of dynamic coupling are investigated. Two equilibrium points with small variations from the nonlinear coupling system are derived and the specific condition from which a coupled equation can be three independent equations is derived. Finally, to examine the stability of system, Lyapunov direct method was used and system stability and stability boundaries are investigated.

Chaotic behavior analysis in the mobile robot : the case of Chuas equation

  • Youngchul Bae;Kim, Juwan;Kim, Yigon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.5-8
    • /
    • 2003
  • In this paper, we propose that the chaotic behavior analysis in the mobile robot of embedding Chua's equation with obstacle. In order to analysis of chaotic behavior in the mobile robot, we apply not only qualitative analysis such as time-series, embedding phase plane, but also quantitative analysis such as Lyapunov exponent in the mobile robot with obstacle. In the obstacle, we only assume that all obstacles in the chaos trajectory surface in which robot workspace has an unstable limit cycle with Van der Pol equation

  • PDF

Boundary Control of an Axially Moving Nonlinear Tensioned Elastic String (인장력하에서 길이방향으로 이동하는 비선형 탄성현의 경계제어)

  • 박선규;이숙재;홍금식
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.1
    • /
    • pp.11-21
    • /
    • 2004
  • In this paper, an active vibration control of a tensioned elastic axially moving string is investigated. The dynamics of the translating string ale described by a non-linear partial differential equation coupled with an ordinary differential equation. The time varying control in the form of the right boundary transverse motions is suggested to stabilize the transverse vibration of the translating continuum. A control law based on Lyapunov's second method is derived. Exponential stability of the translating string under boundary control is verified. The effectiveness of the proposed controller is shown through the simulations.

Robust estimator design for the forward kinematics solution of stewart platform (스튜어트 플랫폼의 견실한 순기구학 추정기 설계)

  • 강지윤;김동환;이교일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.28-31
    • /
    • 1996
  • We propose an estimator design method of Stewart platform, which gives the 6DOF, positions and velcities of Stewart platform from the measured cylinder length. The solution of forward kinematics is not solved yet as a useful realtime application tool because of the complexity of the equation with multiple solutions. Hence we suggest an nonlinear estimator for the forward kinematics solution using Luenberger observer with nonlinear error correction term. But the way of residual gain selection of the estimator is not clear, so we suggest an algebraic Riccati equation for gain matrix using Lyapunov method. This algorithm gives the sufficient condition of the stability of error dynamics and can be extended to general nonlinear system.

  • PDF

Boundary Control of a Tensioned Elastic Axially Moving String

  • Kim, Chang-Won;Hong, Keum-Shik;Park, Hahn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2260-2265
    • /
    • 2005
  • In this paper, an active vibration control of a tensioned elastic axially moving string is investigated. The dynamics of the translating string are described by a non-linear partial differential equation coupled with an ordinary differential equation. A time varying control in the form of right boundary transverse motions is proposed in stabilizing the transverse vibrations of the translating continuum. A control law based on Lyapunov's second method is derived. Exponential stability of the closed-loop system is verified. The effectiveness of the proposed controller is shown through simulations.

  • PDF

Chaotic Behaviour Analysis for Chaotic Mobile Robot (카오스 이동 로봇에서의 카오스 거동 해석)

  • Bae Young-chul;Kim Chun-suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.7
    • /
    • pp.1410-1417
    • /
    • 2004
  • In this paper, we propose that the chaotic behavior analysis in the chaotic mobile robot embedding Arnold, equation, Chua's equation and hyper-chaos equation. In order to analysis of chaotic behavior in the mobile robot, we apply not only qualitative analysis such as time-series, embedding phase plane, but also quantitative analysis such as Lyapunov exponent in the mobile robot with obstacle.

Linear Quadratic Regulators with Two-point Boundary Riccati Equations (양단 경계 조건이 있는 리카티 식을 가진 선형 레규레이터)

  • Kwon, Wook-Hyun
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.16 no.5
    • /
    • pp.18-26
    • /
    • 1979
  • This paper extends some well-known system theories on algebraic matrix Lyapunov and Riccati equations. These extended results contain two point boundary conditions in matrix differential equations and include conventional results as special cases. Necessary and sufficient conditions are derived under which linear systems are stabilizable with feedback gains derived from periodic two-point boundary matrix differential equations. An iterative computation method for two-point boundary differential Riccati equations is given with an initial guess method. The results in this paper are related to periodic feedback controls and also to the quadratic cost problem with a discrete state penalty.

  • PDF

Stability of Switched Linear Systems Using Upper Bounds of Solutions of Lyapunov Matrix Equations (리야프노프 행렬 방정식의 해를 이용한 스위칭 선형시스템의 안정화)

  • Yeom, Dang-Hae;Choi, Jin-Young
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.20-22
    • /
    • 2005
  • In this paper, we propose a novel stability criterion for switched linear systems. The proposed method employs the results on the upper bound of the solution of LME(Lyapunov Matrix Equation) and on the stability of hybrid system. The former guarantees the existence of Lyapunov-like energy functions and the latter shows that the stability of switched linear systems by using these energy functions. The proposed criterion releases the restriction on the stability of switched linear systems comparing with the existing methods and provides us with easy implementation way for pole assignment.

  • PDF

Design of A Controller Using Successive Approximation for Weakly Coupled Bilinear Systems

  • Chang, Jae-Won;Kim, Young-Joong;Kim, Beom-Soo;Lim, Myo-Taeg
    • KIEE International Transaction on Systems and Control
    • /
    • v.12D no.1
    • /
    • pp.33-38
    • /
    • 2002
  • In this paper, the infinite time optimal regulation problem for weakly coupled bilinear systems with quadratic performance criteria is obtained by a sequence of algebraic Lyapunov equations. This is the new approach is based on the successive approximation. In particular, the order reduction is achieved by using suitable state transformation so that the original Lyapunov equations are decomposed into the reduced-order local Lyapunov equations. The proposed algorithms not only solve optimal control problems in the weakly coupled bilinear system but also reduce the computation time. This paper also includes an example to demonstrate the procedures.

  • PDF